
29

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

DOI: 10.4018/978-1-4666-2056-8.ch002

INTRODUCTION

Hardware and software technologies are progress-
ing fast, increasing the complexity of modern
computer systems significantly. Even in the
context of critical scenarios, we are witnessing a
paradigm shift from stand-alone and centralized

systems toward large-scale and distributed infra-
structures and simple monolithic programs are
letting the field to modular software architectures,
typically based on Off-The-Shelf (OTS) software
items. This allows industries to increase market
competitiveness by lowering development costs
and reducing the time to market. Testing and veri-

Gabriella Carrozza
SESM s.c.a.r.l. - a Finmeccanica Company, Italy

Roberto Natella
Università degli Studi di Napoli Federico II, Italy

A Recovery-Oriented Approach
for Software Fault Diagnosis
in Complex Critical Systems

ABSTRACT

This paper proposes an approach to software faults diagnosis in complex fault tolerant systems, en-
compassing the phases of error detection, fault location, and system recovery. Errors are detected in
the first phase, exploiting the operating system support. Faults are identified during the location phase,
through a machine learning based approach. Then, the best recovery action is triggered once the fault
is located. Feedback actions are also used during the location phase to improve detection quality over
time. A real world application from the Air Traffic Control field has been used as case study for evalu-
ating the proposed approach. Experimental results, achieved by means of fault injection, show that the
diagnosis engine is able to diagnose faults with high accuracy and at a low overhead.

30

A Recovery-Oriented Approach for Software Fault Diagnosis

fication, along with fault tolerance techniques, are
used to satisfy dependability requirements. The
key for achieving fault tolerance is the ability to
accurately detect, diagnose, and recover from
faults during system operation.

The great research effort striven in fault tolerant
systems has provided good results with respect
to hardware-related errors. Recent examples are
(Serafini, Bondavalli, & Suri, 2007), (Bondavalli,
Chiaradonna, Cotroneo, & Romano, 2004). How-
ever, it is well known that many systems outages
are due to software faults (Gray, 1985), i.e., to bugs
lying into the code which have, then, a permanent
in nature. This means that, if a program contains
a bug, any circumstances that cause it to fail once
will always cause it to fail, and this is the reason
why software failures are often referred to as “sys-
tematic failures” (Littlewood & Strigini, 2000).
However, the failure process, i.e., the way the
bugs are activated, is not deterministic since (i) the
sequence of inputs cannot be predicted, hence it is
not possible to establish which are the program’s
faults (and failures), and (ii) software failures can
be due to environmental conditions (e.g., timing
and load profile) which let a given fault to be
activated. For this reason, it is said that software
faults can manifest transiently. By failure we intend
the software modules/components failure in which
the fault has been activated. This can be viewed as
fault from the whole system point of view (Joshi,
Hiltunen, Sanders, & Schlichting, 2005). Activat-
ing conditions which cause a software fault to
surface into a failure have been recognized to be
crucial in (Chillarege et al., 1992), where they are
defined as “triggers” and where software bugs are
grouped into orthogonal, non overlapping, defect
types (Orthogonal Defect Classification, ODC).
Software faults which manifest permanently, also
known as Bohrbugs, are likely to fix and discover
during the pre-operational phases of system life
cycle (e.g., structured design, design review,
quality assurance, unit, component and integra-
tion testing, alpha/beta test), as well as by means
of traditional debugging techniques. Conversely,

software faults which manifest transiently, also
known as Heisenbugs, cannot be reproduced
systematically (Huang, Jalote, & Kintala, 1994),
and they have been demonstrated to be the major
cause of failures in software systems, especially
during the system operational phase (Sullivan &
Chillarege, 1991; Chillarege, Biyani, & Rosen-
thal,1995; Xu, Kalbarczyc, & Iyer, 1999).

Focus in this work is on recovery oriented
software fault diagnosis in complex fault tolerant
systems. Little attention has been paid so far to this
problem, which plays a key role in maintaining
system health and in preserving fault tolerance
capabilities. Previous studies on software diagno-
sis aimed to identify software defects from their
manifestations through off-line and/or on-site
analysis (Tucek, Lu, Huang, Xanthos, & Zhou,
2007). They aim to discover bugs in the code, by
using static/dynamic code screening, in order to
perform more effective maintenance operations.
Thus, they are not able to catch Heisenbugs since
this way the underlying environmental conditions
are not easy to localize into the code.

In this work, the aim of diagnosis is twofold.
First, starting from outward symptoms we are
interested in identifying what are the execution
misbehaviors which caused failure occurrence,
and where these misbehaviors come from, in order
to trigger proper recovery actions. This is crucial
in complex, modular and distributed systems,
for which the overall failure can be avoided by
confining and masking the failures of the parts
(nodes, components, processes). Second, we aim to
provide information about manifested symptoms
that are useful for off-line maintenance activities.

The massive presence of OTS items, whose
well-known dependability pitfalls do not hold in-
dustries back from their usage in critical systems,
further exacerbates the diagnosis problem. In fact,
faults can propagate in several ways and among
several components, depending on a complex
combination of their internal state and of the execu-
tion environment. Actually, the failures resulting
from unexpected faults, known as production

26 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/recovery-oriented-approach-software-fault/68942

Related Content

Generating Indicators for Diagnosis of Fault Levels by Integrating Information from Two or More

Sensors
Xiaomin Zhao, Ming J. Zuoand Ramin Moghaddass (2013). Diagnostics and Prognostics of Engineering

Systems: Methods and Techniques (pp. 74-97).

www.irma-international.org/chapter/generating-indicators-diagnosis-fault-levels/69673

Innovative Systems Structure for Real Corporate Governance
 (2021). International Journal of System Dynamics Applications (pp. 0-0).

www.irma-international.org/article//272227

Social Impacts of Using Internet of Things and Data Analytics to Prevent and Reduce the Rate of

Accidents
K.G. Srinivasa, Abhinav Shikhar, J.S. Naveenand B.J. Sowmya (2016). International Journal of Applied

Evolutionary Computation (pp. 60-76).

www.irma-international.org/article/social-impacts-of-using-internet-of-things-and-data-analytics-to-prevent-and-reduce-

the-rate-of-accidents/176695

VPRS-Based Group Decision-Making for Risk Response in Petroleum Investment
Gang Xie, Wuyi Yueand Shouyang Wang (2012). Systems Approaches to Knowledge Management,

Transfer, and Resource Development (pp. 286-295).

www.irma-international.org/chapter/vprs-based-group-decision-making/68225

Synchronization and Anti-Synchronization of Unidirectional and Bidirectional Coupled Chaotic

Systems by Terminal Sliding Mode Control
Ahmad Taher Azar, Fernando E. Serranoand Nashwa Ahmad Kamal (2021). Handbook of Research on

Modeling, Analysis, and Control of Complex Systems (pp. 399-433).

www.irma-international.org/chapter/synchronization-and-anti-synchronization-of-unidirectional-and-bidirectional-coupled-

chaotic-systems-by-terminal-sliding-mode-control/271048

http://www.igi-global.com/chapter/recovery-oriented-approach-software-fault/68942
http://www.irma-international.org/chapter/generating-indicators-diagnosis-fault-levels/69673
http://www.irma-international.org/article//272227
http://www.irma-international.org/article/social-impacts-of-using-internet-of-things-and-data-analytics-to-prevent-and-reduce-the-rate-of-accidents/176695
http://www.irma-international.org/article/social-impacts-of-using-internet-of-things-and-data-analytics-to-prevent-and-reduce-the-rate-of-accidents/176695
http://www.irma-international.org/chapter/vprs-based-group-decision-making/68225
http://www.irma-international.org/chapter/synchronization-and-anti-synchronization-of-unidirectional-and-bidirectional-coupled-chaotic-systems-by-terminal-sliding-mode-control/271048
http://www.irma-international.org/chapter/synchronization-and-anti-synchronization-of-unidirectional-and-bidirectional-coupled-chaotic-systems-by-terminal-sliding-mode-control/271048

