Chapter 76 Knowledge Dissemination in Portals

Steven Woods

Boeing Phantom Works, USA

Stephen Poteet

Boeing Phantom Works, USA

Anne Kao

Boeing Phantom Works, USA

Lesley Quach

Boeing Phantom Works, USA

Category: Processes of Knowledge Management

INTRODUCTION

While there are many aspects to managing corporate knowledge, one key issue is how to disseminate corporate documents with appropriate context. Upon finding an article on a certain subject, for example the material properties of titanium, a reader is likely to be interested in related articles such as applications of titanium or manufacturing methods for titanium parts. Each related article has the potential to increase the reader's knowledge of the subject. Therefore, organizing documents into categories of interest plays an essential role

DOI: 10.4018/978-1-4666-1945-6.ch076

in discovering and interpreting information. Furthermore, categories can be expected to provide historical context, describing how titanium was used in early designs or initial practices used for the repair of titanium parts.

While most large companies make a practice of cataloging and controlling well-established documents, there is a vast set of *explicit information* that has not traditionally been effectively disseminated. This class of information is less formal and may be exchanged, updated, and otherwise managed at the local level. Such information is usually not controlled at the corporate level or governed by the same organizations established to handle more stable information. Processes to disseminate such information tend to be ad hoc or nonexistent. In this article, we discuss the elements necessary to effectively disseminate informal and explicit

information not controlled at the enterprise level. While the main emphasis of the article is to promote a general process for the dissemination of this type of material in large corporations, we will use a specific implementation of this process at the Boeing Company as an illustrative example.

BACKGROUND

Traditionally, the dissemination of corporate knowledge has taken a number of different forms. First, there are the methods of classic library science often as implemented by a formal corporate library staffed by trained librarians (Taylor, 2000). This is used for things that are well established: e.g. textbooks, established how-to knowledge on a subject, published papers on a subject, and so on. Second, it has long been necessary to disseminate official policy and procedure through "Command and Control" processes and associated media. In addition, certain industries also require configuration control processes for special classes of information such as product data, drawings, and manufacturing rejection and acceptance documentation. These are all subject to an authentication process, flowing top-down to intended users. A third, extremely important, approach to knowledge maintenance and dissemination has been through mentoring and establishment of departments aligned to technical specialties and communities of interest. This last type of approach

is particularly well suited for *tacit knowledge*. A fourth category of knowledge sharing applies to the communication of explicit knowledge among peers but also includes dissemination to management and other reference groups. This method applies to information that is less formal and frequently ephemeral. See Table 1.

This fourth method is of an entirely more fluid nature and, in some cases, represents the majority of a corporation's explicit knowledge. While it is appropriate for the enterprise to disseminate formal information using traditional, formal means, there is a need to disseminate less formal information as well. This informal knowledge often includes the most current information within a company and without adequate dissemination corporate decision-making is likely to fall short. In summary, stable and formal information is well handled by existing library or document release systems. Ephemeral, less formal, and generally less controlled content, while important, is currently only shared across the enterprise by a variety of ad hoc means, if at all.

MAIN FOCUS OF THE ARTICLE

This article focuses on how to systematically share this fourth category of informal and uncontrolled knowledge. The ideal for knowledge dissemination is to make sure information of this type can be well integrated into existing formal content,

m 11 1	α		<i>c</i> .	1	7.		.1 1
Table I	Summarization	of 1	tour trac	lifional	dicco	minatiai	1 mothods
Iuuic I.	Dullilliai Lation	OII	oui ii uu	uuonuu	uisse	mununoi	inicinous

Methods	Types of Information	Tacit/ Explicit	Scope of Control	Status of Information
1. Corporate Library	Formal: books, research periodicals, white papers	Explicit	Enterprise-wide	Stable
2. Command and Control	Formal: documentation of standards, regulations, policies, procedures	Explicit	Enterprise-wide	Relatively stable
3. Undocumented	Informal: skill, experience, expertise	Tacit	Local	Both Stable and Ephemeral
4. Uncontrolled	Informal: test notes, presentations, lessons learned, emails	Explicit	Local	Both Stable and Ephemeral

9 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/knowledge-dissemination-portals/69347

Related Content

Intelligent Control and Optimal Operation of Complex Electric Power Systems Using Hierarchical Neural Networks

Dingguo Chenand Ronald R. Mohler (2010). *Intelligent Industrial Systems: Modeling, Automation and Adaptive Behavior (pp. 291-320).*

www.irma-international.org/chapter/intelligent-control-optimal-operation-complex/43637

Intelligent Diagnosis and Maintenance

Zude Zhou, Huaiqing Wangand Ping Lou (2010). *Manufacturing Intelligence for Industrial Engineering: Methods for System Self-Organization, Learning, and Adaptation (pp. 301-328).* www.irma-international.org/chapter/intelligent-diagnosis-maintenance/42630

Effective Decision-Making in Project Based Environments: A Reflection of Best Practices Brian J. Galli (2018). *International Journal of Applied Industrial Engineering (pp. 50-62).* www.irma-international.org/article/effective-decision-making-in-project-based-environments/202420

The Role of Total Productive Maintenance in Group Technology to Achieve World-Class Status Hassan Farsijani, Mohsen Shafiei Nikabadiand Fatemeh Mojibian (2012). *International Journal of Applied Industrial Engineering (pp. 25-35).*

www.irma-international.org/article/the-role-of-total-productive-maintenance-in-group-technology-to-achieve-world-class-status/93013

A Production Planning Optimization Model for Maximizing Battery Manufacturing Profitability Hesham K. Alfares (2012). *International Journal of Applied Industrial Engineering (pp. 55-63).* www.irma-international.org/article/production-planning-optimization-model-maximizing/62988