
410

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

Dinesh Batra
Florida International University, USA

Debra VanderMeer
Florida International University, USA

Kaushik Dutta
National University of Singapore, Singapore

Extending Agile Principles
to Larger, Dynamic
Software Projects:

A Theoretical Assessment

ABSTRACT

The article evaluates the feasibility of extending agile principles to larger, dynamic, and possibly distrib-
uted software development projects by uncovering the theoretical basis for agile values and principles
for achieving agility. The extant literature focuses mainly on one theory – complex adaptive systems
– to support agile methods, although recent research indicates that the control theory and the adaptive
structuration theory are also applicable. This article proposes that at least three other theories exist
that are highly relevant: transaction cost economics, social exchange theory, and expectancy theory. By
employing these theories, a rigorous analysis of the Agile Manifesto is conducted. Certain agile values
and principles find theoretical support and can be applied to enhance agility dynamic projects regard-
less of size; some agile principles find no theoretical support while others find limited support. Based
on the analysis and the ensuing discussion, the authors propose a framework with five dimensions of
agility: process, design, people, outcomes, and adaptation.

DOI: 10.4018/978-1-4666-2044-5.ch016

411

Extending Agile Principles to Larger, Dynamic Software Projects

INTRODUCTION

As business and technology environments change
at an unprecedented rate, software development
agility to respond to changing user requirements
has become increasingly critical for software
development performance (Lee & Xia, 2010).
Software development agility is the ability of an
information system development (ISD) method
to create change, or proactively, reactively, or
inherently embrace change in a timely manner,
through its internal components and relationships
with its environment (Conboy, 2009). Agility is
an organization’s ability to sense and respond
swiftly to technical changes and new business
opportunities (Lyytinen & Rose, 2006). At its
core, agility means to strip away as much of the
heaviness, commonly associated with traditional
software-development methodologies, as possible
to promote quick response to changing environ-
ments, changes in user requirements, and accel-
erated project deadlines (Erickson, Lyytinen, &
Siau, 2005). In response to the need for agility,
lightweight agile software development methods
have emerged as alternatives to process-heavy
plan-based methodologies as organizations seek
to deliver software more quickly (Abrahamsson,
Conboy, & Wang, 2009), while simultaneously
ensuring that the delivered software is of high
quality and is closely aligned to the needs of the
customer (Larman, 2003).

The call for such methods arose in 2001, with
the publication of the Agile Manifesto (http://ag-
ilemanifesto.org), which has remained unchanged
in a decade even as several agile methods have
been proposed. The manifesto is based on four val-
ues: “individuals and interactions over processes
and tools, working software over comprehensive
documentation, customer collaboration over con-
tract negotiation, and responding to change over
following a plan.” These values are accompanied
by a set of twelve agile principles that provide
guidance toward agile practice in development.

The manifesto was written by a group of prac-
titioners interested in bringing together a number
of lightweight methodologies, most of which now
fall into the agile camp (Boehm & Turner, 2003;
Qumer & Henderson-Sellers, 2008), including
Scrum (Schwaber & Beedle, 2002), Extreme Pro-
gramming or XP (Beck, 2000), Adaptive Software
Development (Highsmith, 1999), and others. The
agile movement grew out of practitioners’ impa-
tience with heavier, plan-based methods, and their
belief that there must be a better way. Indeed, the
use of the word “manifesto,” a highly-charged word
associated with revolutionary change, in the title
was probably intentional – the authors wanted to
highlight the radical differences between their agile
methods and traditional plan-based approaches.

A decade later, the impact of the Agile Mani-
festo and its associated ideas is clear: agile methods
have taken their place alongside more traditional
approaches and are widely used (McAvoy &
Butler, 2009). Thousands of practitioners have
signed their names in support of the Agile Mani-
festo (http://agilemanifesto.org/sign/display.cgi),
while a 2008 survey by Dr. Dobb’s Digest suggests
that up to 69% of responding organizations have
adopted agile methods in some form, from pilot
projects to full deployment of agile methods, and
that respondents believe that their use of agile
methods result in higher quality deliverables,
more productive developers, and more satisfied
stakeholders (Ambler, 2008).

However, there is evidence that supports the
widely-held view that agile development has been
applied only to small projects (Henderson-Sellers
& Serour, 2005). Dyba and Dingsoyr (2008) pres-
ent an extensive review of agile case study reports
in the literature. Of the 33 projects referenced in
this study, only four project teams had 20 or more
members, and only one project team had a size
greater than 23, at 60 members. Chow and Cao
(2008) examined critical success factors in 109
agile projects. Of these projects, nearly 80% of
project teams had fewer than 20 members. The
Scrum methodology recommends projects teams

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/extending-agile-principles-larger-dynamic/74402

Related Content

Reverse Engineering from an XML Document into an Extended DTD Graph
Herbert Shiuand Joseph Fong (2008). Journal of Database Management (pp. 62-80).

www.irma-international.org/article/reverse-engineering-xml-document-into/3395

CORBA-Based Run-Time Architectures for Workflow Management Systems
J. A. Miller, A. P. Sheth, K. J. Kochutand X. Wang (1996). Journal of Database Management (pp. 16-27).

www.irma-international.org/article/corba-based-run-time-architectures/51159

Politically Oriented Database Applications
Francisco A.C. Pinheiro (2009). Handbook of Research on Innovations in Database Technologies and

Applications: Current and Future Trends (pp. 214-220).

www.irma-international.org/chapter/politically-oriented-database-applications/20706

Creating a Dual-Agility Method: The Value of Method Engineering
B. Henderson-Sellersand M. K. Serour (2005). Journal of Database Management (pp. 1-24).

www.irma-international.org/article/creating-dual-agility-method/3339

Where Do Time Constraints Come From? Where Do They Go?
Krithi Ramamritham (1996). Journal of Database Management (pp. 4-11).

www.irma-international.org/article/time-constraints-come-they/51161

http://www.igi-global.com/chapter/extending-agile-principles-larger-dynamic/74402
http://www.irma-international.org/article/reverse-engineering-xml-document-into/3395
http://www.irma-international.org/article/corba-based-run-time-architectures/51159
http://www.irma-international.org/chapter/politically-oriented-database-applications/20706
http://www.irma-international.org/article/creating-dual-agility-method/3339
http://www.irma-international.org/article/time-constraints-come-they/51161

