
196

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.14
Indexing Textual Information

Ioannis N. Kouris
University of Patras, Greece

Christos Makris
University of Patras, Greece

Evangelos Theodoridis
University of Patras, Greece

Athanasios Tsakalidis
University of Patras, Greece

Introduction

Information retrieval is the computational disci-
pline that deals with the efficient representation,
organization, and access to information objects
that represent natural language texts (Baeza-Yates,
& Ribeiro-Neto, 1999; Salton & McGill, 1983;
Witten, Moûat, & Bell, 1999). A crucial subprob-
lem in the information retrieval area is the design
and implementation of efficient data structures and
algorithms for indexing and searching information
objects that are vaguely described. In this article,
we are going to present the latest developments
in the indexing area by giving special emphasis
to: data structures and algorithmic techniques for
string manipulation, space efficient implementa-
tions, and compression techniques for efficient
storage of information objects.

The aforementioned problems appear in a se-
ries of applications as digital libraries, molecular
sequence databases (DNA sequences, protein
databases [Gusûeld, 1997)], implementation of
Web search engines, web mining and informa-
tion filtering.

background

Dictionary Data Structures

The dictionary data structure stores a set S of n
elements in order to support the operations of
insertion, deletion, and the test of membership.
A basic criterion for categorizing dictionary data
structures is whether only comparisons are used,
or the representation of elements for guiding the

 197

Indexing Textual Information

search is also employed. Typical representatives
of the former group are search trees and of the
latter tries and hashing. Search trees need O(logn)
update/search time and O(n) space and the most
prominent examples of them are: AVL-trees, red-
black trees, (α,b)-trees, BB[α]-trees and Weight
Balanced B-trees (Arge, & Vitter, 1996; Cor-
men, Leiserson, & Rivest, 1990; Mehlhorn, 1984).
On the other hand, tries and hashing structures
(Cormen, Leiserson, & Rivest, 1990; Czegh,
Havas, & Majewski, 1997; Pagh, 2002) try to
use the representation (for example, the value of
the element written as a string of digits or the
value itself), to compute directly the element’s
position in system’s memory. The time and space
complexities of these structures generally vary;
however, it should be mentioned that a lately
developed structure (Anderson & Thorup, 2001)
answers both search and update operations in O
(log / log logn n) time. This structure is also
able to retrieve the largest element in the stored
set smaller than a query element (predecessor
query).

Finding Occurrences of Patterns

The string matching (or pattern matching) problem
is one of the most frequently encountered and
studied problems in the area of system/algorithm
design. In this problem, we are searching for the
occurrences of a pattern P in a sequence of sym-
bols T. The naive O(|P||T|) algorithm aligns the
pattern at each one of the O(|T|) possible positions
of the sequence and executes O(|P|) comparisons;
however, there exist elegant, though complex, al-
gorithms whose overall time complexity is linear,
that is, O(|P|+ |T|). The most known linear time
algorithms that achieve that are Knuth-Morris-
Pratt (Knuth, Morris, & Pratt, 1977) and variants
of the Boyer-Moore (Boyer & Moore, 1977) al-
gorithm. For the case that we are searching for a
set of patterns in the sequence, the Aho-Corasick
automaton (Aho & Corasick, 1975) can be used.

This automaton accepts all the patterns of the set
and can be constructed in time linear to the sum
of the lengths of them. Running the automaton
with the characters of T, all the occurrences of
the patterns are reported in O(|T|) time.

On most of the modern applications, the pat-
terns arrive in an on line manner and the O(|T|+
|P|) computational time is prohibitive; there is need
for indexing structures (indices) that can perform
the queries as closer as possible to O(|P|) com-
putational time, assuming that the text has been
preprocessed once. The indices that try to satisfy
this demand are divided in two categories: the
word-based (or keyword-based) indices, which
have been designed for sequences of symbols that
can be divided in tokens/words, and the full-text
(or sequential scan) indices, where the previous
feature does not hold and the strings involved are
non-tokenizable.

Text and String
Data Structures

Word Based Indices

The most commonly used indexing structures in
this category are inverted files, signature files and
bitmaps. An inverted file consists of two parts: a
structure for storing the set of all different words
in the text and, for each such word, a list of the text
positions where the word appearances are stored.
Signature files are term-oriented structured based
on hashing while bitmaps represent each document
as a bit vector having length equal to the size of
the lexicon. In typical applications compressed
inverted files are considered to be superior to
both signature files and bitmaps (Faloutsos, 1985;
Zobel, Moffat, & Ramamohanarao, 1998).

More analytically, consider a document collec-
tion and a lexicon containing the terms that appear
in the documents of the collection. An inverted
file consists of a search structure containing all
the distinct terms that appear in the lexicon and,

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/indexing-textual-information/7911

Related Content

Normalization of Relations with Nulls in Candidate Keys
George C. Philip (2002). Journal of Database Management (pp. 35-45).

www.irma-international.org/article/normalization-relations-nulls-candidate-keys/3282

The Effects of Construct Redundancy on Readers' Understanding of Conceptual Models
Palash Beraand Geert Poels (2017). Journal of Database Management (pp. 1-25).

www.irma-international.org/article/the-effects-of-construct-redundancy-on-readers-understanding-of-conceptual-

models/189136

An Empirical Analysis of the Object-Oriented Database Concurrency Control Mechanism O2C2
David Olsenand Sudha Ram (1999). Journal of Database Management (pp. 14-26).

www.irma-international.org/article/empirical-analysis-object-oriented-database/51215

Semantically Modeled Databases in Integrated Enterprise Information Systems
Cheryl L. Dunnand Severin V. Grabiski (2001). Developing Quality Complex Database Systems: Practices,

Techniques and Technologies (pp. 279-302).

www.irma-international.org/chapter/semantically-modeled-databases-integrated-enterprise/8280

Spatio-Temporal Indexing Techniques
Michael Vassilakopoulosand Antonio Corral (2005). Encyclopedia of Database Technologies and

Applications (pp. 652-657).

www.irma-international.org/chapter/spatio-temporal-indexing-techniques/11219

http://www.igi-global.com/chapter/indexing-textual-information/7911
http://www.irma-international.org/article/normalization-relations-nulls-candidate-keys/3282
http://www.irma-international.org/article/the-effects-of-construct-redundancy-on-readers-understanding-of-conceptual-models/189136
http://www.irma-international.org/article/the-effects-of-construct-redundancy-on-readers-understanding-of-conceptual-models/189136
http://www.irma-international.org/article/empirical-analysis-object-oriented-database/51215
http://www.irma-international.org/chapter/semantically-modeled-databases-integrated-enterprise/8280
http://www.irma-international.org/chapter/spatio-temporal-indexing-techniques/11219

