
212

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.16
Database Integrity Checking

Hendrik Decker
Universidad Politécnica de Valencia, Spain

Davide Martinenghi
Free University of Bozen/Bolzano, Italy

Introduction

Integrity constraints (or simply “constraints”) are
formal representations of invariant conditions
for the semantic correctness of database records.
Constraints can be expressed in declarative lan-
guages such as datalog, predicate logic, or SQL.
This article highlights the historical background
of integrity constraints and the essential features
of their simplified incremental evaluation. It con-
cludes with an outlook on future trends.

Background

Integrity has always been an important issue for
database design and control, as attested by many
early publications (e.g., Bernstein & Blaustein,
1982; Bernstein, Blaustein, & Clarke, 1980; Codd,
1970, 1979; Eswaran & Chamberlin, 1975; Fraser,
1969; Hammer & McLeod, 1975; Hammer &
Sarin, 1978; Nicolas, 1978, 1982; Wilkes, 1972);
later ones are too numerous to mention. Express-

ing database semantics as invariant properties
persisting across updates had first been proposed
by Minsky (1974). Florentin (1974) suggested
expressing integrity constraints as predicate
logic statements. Stonebraker (1975) proposed
formulating and checking integrity constraints
declaratively as SQL-like queries.

Functional dependencies (Armstrong, 1974;
Codd, 1970) are a fundamental kind of constraints
to guide database design. Referential integrity has
been part of the 1989 SQL ANSI and ISO stan-
dards (McJones, 1997). The SQL2 standard (1992)
introduced the CHECK and ASSERTION constructs
(i.e., table-bound and table-independent SQL
query conditions) as the most general means to
express integrity constraints declaratively (Date
& Darwen, 1997). Since the 1990s, uniqueness
constraints, foreign keys, and complex queries
involving EXISTS and NOT became common fea-
tures in commercial databases. Thus, arbitrarily
general and complex integrity constraints can
now be expressed and evaluated in most relational
databases. However, most of them offer efficient

 213

Database Integrity Checking

support only for the following three simple kinds
of declarative constraints:

•	 Domain Constraints: Restrictions on the
permissible range of attribute values of tuples
in table columns, including scalar SQL data
types and subsets thereof, as well as options
for default and null values.

•	 Uniqueness Constraints: As enforced by
the UNIQUE construct on single columns,
and UNIQUE INDEX and PRIMARY KEY on
any combination of one or several columns
in a table, preventing multiple occurrences
of values or combinations thereof.

•	 Foreign Key Constraints: For establishing
a relationship between the tuples of two
tables, requiring identical column values.
For instance, a foreign key on column emp
of relation works_in requires that the emp
value of each tuple of works_in must occur
in the emp_id column of table employee,
and that the referenced column (emp_id in
the example) has been declared as primary
key.

For more general constraints, SQL manuals
usually recommend using procedural triggers
or stored procedures instead of declarative con-
structs. This is because such constraints may
involve nested quantifications over huge extents
of several tables. Thus, their evaluation can easily
become prohibitively costly. However, declarativ-
ity does not need to be sacrificed for efficiency, as
shown by many methods of simplified integrity
checking as cited in this survey. They are all based
on the seminal paper (Nicolas, 1982).

Simplified Incremental
Integrity Checking

A common idea of all integrity checking methods
is that not all constraints need to be evaluated,
but at most those that are possibly affected by the

incremental change caused by database updates
or transactions. Anticipating updates by patterns,
most incremental integrity checking methods
allow for simplifications of constraints to be
generated already at schema compilation time.
Such compiled simplifications are parametric
conditions to be instantiated, possibly further opti-
mized, and evaluated upon given update requests.
For generating them, only the database schema, the
integrity constraints, and the update patterns are
needed as input. Their evaluation, however, may
involve access to the stored data at update time.
Methods that generate compiled simplifications
are described, for example, by Christiansen and
Martinenghi (2006), Decker (1987), and Leuschel
and De Schreye (1998). For unanticipated ad-hoc
updates, the generation of simplifications takes
place at update time. Optimizations for efficient
evaluation of simplified constraints are addressed,
for example, by Sheu & Lee (1987).

Simplifications can be distinguished by the
database state in which they are evaluated. Post-
test methods must evaluate their simplifications in
the new, updated state, for example, Decker and
Celma (1994), Grant and Minker (1990), Lloyd,
Sonenberg, and Topor (1987), Nicolas (1982), and
Sadri and Kowalski (1988). Pre-test approaches,
for example, Bry, Decker, and Manthey (1988),
Christiansen and Martinenghi (2006), Hsu and
Imielinski (1985), McCune and Henschen (1989),
and Qian (1988), only access the old state before
the update, that is, they need not execute the
update prematurely, since undoing an updated
state if integrity is violated is costly. In case of
integrity violation, the eagerness of pre-tests to
avoid rollbacks is a clear performance advantage
over post-tests.

For convenience, a finite set of constraints
imposed on a database D is called an integrity
theory of D. For a database D and an integrity
theory IC, let D(IC) = satisfied denote that IC
is satisfied in D, and D(IC) = violated that it is
violated. Further, for an update U, let DU denote
the updated database. Any simplification method

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/database-integrity-checking/7913

Related Content

Ensuring Customised Transactional Reliability of Composite Services
Sami Bhiri, Walid Gaaloul, Claude Godart, Olivier Perrin, Maciej Zarembaand Wassim Derguech (2011).

Journal of Database Management (pp. 64-92).

www.irma-international.org/article/ensuring-customised-transactional-reliability-composite/52993

Prudential Chamberlain Stiehl: The Evolution of an IT Architecture for a Residential Real Estate

Firm, 1996-2001
Andy Borchersand Bob Mills (2006). Cases on Database Technologies and Applications (pp. 267-287).

www.irma-international.org/chapter/prudential-chamberlain-stiehl/6216

Long-Term Evolution of a Conceptual Schema at a Life Insurance Company
Lex Wedemeijer (2006). Cases on Database Technologies and Applications (pp. 202-226).

www.irma-international.org/chapter/long-term-evolution-conceptual-schema/6213

Deliberate and Emergent Changes on a Way Toward Document Management
Tero Paivarintaand Airi Salminen (2006). Cases on Database Technologies and Applications (pp. 171-188).

www.irma-international.org/chapter/deliberate-emergent-changes-way-toward/6211

Modeling Temporal Dynamics for Business Systems
Gove N. Allenand Salvatore T. March (2003). Journal of Database Management (pp. 21-36).

www.irma-international.org/article/modeling-temporal-dynamics-business-systems/3297

http://www.igi-global.com/chapter/database-integrity-checking/7913
http://www.irma-international.org/article/ensuring-customised-transactional-reliability-composite/52993
http://www.irma-international.org/chapter/prudential-chamberlain-stiehl/6216
http://www.irma-international.org/chapter/long-term-evolution-conceptual-schema/6213
http://www.irma-international.org/chapter/deliberate-emergent-changes-way-toward/6211
http://www.irma-international.org/article/modeling-temporal-dynamics-business-systems/3297

