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Introduction

Integrity constraints (or simply “constraints”) are 
formal representations of invariant conditions 
for the semantic correctness of database records. 
Constraints can be expressed in declarative lan-
guages such as datalog, predicate logic, or SQL. 
This article highlights the historical background 
of integrity constraints and the essential features 
of their simplified incremental evaluation. It con-
cludes with an outlook on future trends. 

Background

Integrity has always been an important issue for 
database design and control, as attested by many 
early publications (e.g., Bernstein & Blaustein, 
1982; Bernstein, Blaustein, & Clarke, 1980; Codd, 
1970, 1979; Eswaran & Chamberlin, 1975; Fraser, 
1969; Hammer & McLeod, 1975; Hammer & 
Sarin, 1978; Nicolas, 1978, 1982; Wilkes, 1972); 
later ones are too numerous to mention. Express-

ing database semantics as invariant properties 
persisting across updates had first been proposed 
by Minsky (1974). Florentin (1974) suggested 
expressing integrity constraints as predicate 
logic statements. Stonebraker (1975) proposed 
formulating and checking integrity constraints 
declaratively as SQL-like queries. 

Functional dependencies (Armstrong, 1974; 
Codd, 1970) are a fundamental kind of constraints 
to guide database design. Referential integrity has 
been part of the 1989 SQL ANSI and ISO stan-
dards (McJones, 1997). The SQL2 standard (1992) 
introduced the CHECK and ASSERTION constructs 
(i.e., table-bound and table-independent SQL 
query conditions) as the most general means to 
express integrity constraints declaratively (Date 
& Darwen, 1997). Since the 1990s, uniqueness 
constraints, foreign keys, and complex queries 
involving EXISTS and NOT became common fea-
tures in commercial databases. Thus, arbitrarily 
general and complex integrity constraints can 
now be expressed and evaluated in most relational 
databases. However, most of them offer efficient 
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support only for the following three simple kinds 
of declarative constraints:

•	 Domain Constraints: Restrictions on the 
permissible range of attribute values of tuples 
in table columns, including scalar SQL data 
types and subsets thereof, as well as options 
for default and null values.

•	 Uniqueness Constraints: As enforced by 
the UNIQUE construct on single columns, 
and UNIQUE INDEX and PRIMARY KEY on 
any combination of one or several columns 
in a table, preventing multiple occurrences 
of values or combinations thereof.

•	 Foreign Key Constraints: For establishing 
a relationship between the tuples of two 
tables, requiring identical column values. 
For instance, a foreign key on column emp 
of relation works_in requires that the emp 
value of each tuple of works_in must occur 
in the emp_id column of table employee, 
and that the referenced column (emp_id in 
the example) has been declared as primary 
key. 

For more general constraints, SQL manuals 
usually recommend using procedural triggers 
or stored procedures instead of declarative con-
structs. This is because such constraints may 
involve nested quantifications over huge extents 
of several tables. Thus, their evaluation can easily 
become prohibitively costly. However, declarativ-
ity does not need to be sacrificed for efficiency, as 
shown by many methods of simplified integrity 
checking as cited in this survey. They are all based 
on the seminal paper (Nicolas, 1982).

Simplified Incremental 
Integrity Checking

A common idea of all integrity checking methods 
is that not all constraints need to be evaluated, 
but at most those that are possibly affected by the 

incremental change caused by database updates 
or transactions. Anticipating updates by patterns, 
most incremental integrity checking methods 
allow for simplifications of constraints to be 
generated already at schema compilation time. 
Such compiled simplifications are parametric 
conditions to be instantiated, possibly further opti-
mized, and evaluated upon given update requests. 
For generating them, only the database schema, the 
integrity constraints, and the update patterns are 
needed as input. Their evaluation, however, may 
involve access to the stored data at update time. 
Methods that generate compiled simplifications 
are described, for example, by Christiansen and 
Martinenghi (2006), Decker (1987), and Leuschel 
and De Schreye (1998). For unanticipated ad-hoc 
updates, the generation of simplifications takes 
place at update time. Optimizations for efficient 
evaluation of simplified constraints are addressed, 
for example, by Sheu & Lee (1987).

Simplifications can be distinguished by the 
database state in which they are evaluated. Post-
test methods must evaluate their simplifications in 
the new, updated state, for example, Decker and 
Celma (1994), Grant and Minker (1990), Lloyd, 
Sonenberg, and Topor (1987), Nicolas (1982), and 
Sadri and Kowalski (1988). Pre-test approaches, 
for example, Bry, Decker, and Manthey (1988), 
Christiansen and Martinenghi (2006), Hsu and 
Imielinski (1985), McCune and Henschen (1989), 
and Qian (1988), only access the old state before 
the update, that is, they need not execute the 
update prematurely, since undoing an updated 
state if integrity is violated is costly. In case of 
integrity violation, the eagerness of pre-tests to 
avoid rollbacks is a clear performance advantage 
over post-tests.

For convenience, a finite set of constraints 
imposed on a database D is called an integrity 
theory of D. For a database D and an integrity 
theory IC, let D(IC) = satisfied denote that IC 
is satisfied in D, and D(IC) = violated that it is 
violated. Further, for an update U, let DU denote 
the updated database. Any simplification method 
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