
��0

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.8
Semantic Integrity Constraint

Checking for Multiple
XML Databases

Praveen Madiraju
Marquette University, USA

Rajshekhar Sunderraman
Georgia State University, USA

Shamkant B. Navathe
Georgia Institute of Technology, USA

Haibin Wang
Emory University, USA

abstract

Global semantic integrity constraints ensure in-
tegrity and consistency of data spanning multiple
databases. In this paper, we take initial steps
towards representing global semantic integrity
constraints for XML databases. We also provide
a general framework for checking global se-
mantic integrity constraints for XML databases.
Furthermore, we set forth an efficient algorithm
for checking global semantic integrity constraints

across multiple XML databases. Our algorithm is
efficient for three reasons: (1) the algorithm does
not require the update statement to be executed
before the constraint check is carried out; hence,
we avoid any potential problems associated with
rollbacks, (2) sub constraint checks are executed
in parallel, and (3) most of the processing of al-
gorithm could happen at compile time; hence, we
save time spent at run-time. As a proof of concept,
we present a prototype of the system implementing
the ideas discussed in this paper.

 ���

Semantic Integrity Constraint Checking for Multiple XML Databases

IntroductIon

Consider a scenario wherein two or three different
companies host XML data (native XML database
management system) at different and indepen-
dent sites. Data at these sites are not necessarily
independent, but may participate in a relation-
ship with data from other sites. A single update
(XUpdate [Tatarinov, Ives, Halevy, & Daniel,
2001; Laux & Martin, 2000]) on one site might
cause a global constraint (global XConstraint)
to be violated. By global XConstraints, we mean
global semantic integrity constraints affecting
multiple XML databases. Hence we need an ap-
proach to check for such constraint violations.
In the XML database setting, the majority of the
times, users are interested in generating (updat-
ing), integrating and exchanging data. So, frequent
updates on XML data may cause frequent global
constraint violations. Hence we need a plan that
will efficiently and speedily check for such global
constraint violations.

Plan A would be to translate the XML docu-
ment into relational data using methods such as
those found in Shanmugasundaram, Tufte, He,
Zhang, DeWitt, and Naughton (1999), Chen,
Davidson, Hara, and Zheng (2003), and Fong
and Wong (2004). And then, map the updates and
constraints on the XML data to corresponding up-
dates and constraints on the relational data (Chen,
Davidson, & Zheng, 2002a). Now the problem of
constraint checking on XML data is pushed to the
problem of constraint checking on relational data.
There are well established models for constraint
checking in the relational world. However, this
approach suffers from the overhead cost involved
in transforming XML data into relational data
(Kane, Su, & Rundensteiner, 2002). Plan B would
be to check for constraint violations on the XML
data without transforming to relational data. It
should be noted that using plan A versus plan B
depends on the application being considered. If
the application contains millions of records and
if it benefits to use relational database features

such as querying, fast indexing, and so forth, it
is worthwhile to consider plan A; otherwise, plan
B suffices for a normal-sized application. In this
paper, we consider the plan B route.

A brute force approach would first update an
XML document and then check for constraint
violations. If a constraint is violated, we can
rollback. However, such a brute force approach
suffers from the overhead of time and resources
spent on rollback. Hence, we need an approach
that would check for constraint violations before
updating the database and therefore obviates the
need for rollback situations.

In our constraint checking procedure, con-
straint violations are checked at compile time,
before updating the database. Our approach
centers on the design of the XConstraint Checker.
Given an XUpdate (Tatarinov et al., 2001; Laux
& Martin, 2000) statement and a list of global
XConstraints, we generate sub XConstraint checks
corresponding to local sites. Sub XConstraint is an
XML constraint, expressed as an XQuery, local
to a single site (more details in the fourth section).
The results gathered from these sub XConstraints
determine if the XUpdate statement violates any
global XConstraints. Our approach is efficient;
since we do not require the update statement to
be executed before the constraint check is carried
out and hence, we avoid any rollback situations.
Our approach achieves speed as the sub constraint
checks can be executed in parallel.

Overview of the System

Figure 1 gives the overview of the system. We
propose a three-tier architecture. The server side
consists of two or more sites hosting native XML
databases. In Figure 1, we show three sites — S1,
S2, and S3. The client makes an XUpdate request
through the middleware. The middleware consists
of the XConstraint Checker and the XML/DBC
(Gardarin, Mensch, Tuyet, & Smit, 2002) API.
In previous work (Madiraju, Sunderraman, &
Navathe, 2004), we have introduced our notations

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/semantic-integrity-constraint-checking-

multiple/7931

Related Content

Collaboration Matrix Factorization on Rate and Review for Recommendation
Zhicheng Wu, Huafeng Liu, Yanyan Xuand Liping Jing (2019). Journal of Database Management (pp. 27-

43).

www.irma-international.org/article/collaboration-matrix-factorization-on-rate-and-review-for-recommendation/232720

A Scalable Algorithm for One-to-One, Onto, and Partial Schema Matching with Uninterpreted

Column Names and Column Values
Boris Rabinovichand Mark Last (2014). Journal of Database Management (pp. 1-16).

www.irma-international.org/article/a-scalable-algorithm-for-one-to-one-onto-and-partial-schema-matching-with-

uninterpreted-column-names-and-column-values/138623

Large Scale Graph Mining with MapReduce: Counting Triangles in Large Real Networks
Charalampos E. Tsourakakis (2012). Graph Data Management: Techniques and Applications (pp. 299-

314).

www.irma-international.org/chapter/large-scale-graph-mining-mapreduce/58616

CAM: A Conceptual Modeling Framework based on the Analysis of Entity Classes and

Association Types
Sofia J. Athenikosand Il-Yeol Song (2013). Journal of Database Management (pp. 51-80).

www.irma-international.org/article/cam/100406

COGEVAL: Applying Cognitive Theories to Evaluate Conceptual Models
Stephen Rockwelland Akhilesh Bajaj (2005). Advanced Topics in Database Research, Volume 4 (pp. 255-

282).

www.irma-international.org/chapter/cogeval-applying-cognitive-theories-evaluate/4378

http://www.igi-global.com/chapter/semantic-integrity-constraint-checking-multiple/7931
http://www.igi-global.com/chapter/semantic-integrity-constraint-checking-multiple/7931
http://www.irma-international.org/article/collaboration-matrix-factorization-on-rate-and-review-for-recommendation/232720
http://www.irma-international.org/article/a-scalable-algorithm-for-one-to-one-onto-and-partial-schema-matching-with-uninterpreted-column-names-and-column-values/138623
http://www.irma-international.org/article/a-scalable-algorithm-for-one-to-one-onto-and-partial-schema-matching-with-uninterpreted-column-names-and-column-values/138623
http://www.irma-international.org/chapter/large-scale-graph-mining-mapreduce/58616
http://www.irma-international.org/article/cam/100406
http://www.irma-international.org/chapter/cogeval-applying-cognitive-theories-evaluate/4378

