## Chapter 11 Big Data at Scale for Digital Humanities: An Architecture for the HathiTrust Research Center

Stacy T. Kowalczyk Dominican University, USA

Yiming Sun Indiana University, USA

Zong Peng Indiana University, USA

Beth Plale Indiana University, USA

Aaron Todd Indiana University, USA

**Loretta Auvil** University of Illinois, USA **Craig Willis** University of Illinois, USA

Jiaan Zeng Indiana University, USA

Milinda Pathirage Indiana University, USA

Samitha Liyanage Indiana University, USA

**Guangchen Ruan** Indiana University, USA

J. Stephen Downie University of Illinois, USA

## ABSTRACT

Big Data in the humanities is a new phenomenon that is expected to revolutionize the process of humanities research. The HathiTrust Research Center (HTRC) is a cyberinfrastructure to support humanities research on big humanities data. The HathiTrust Research Center has been designed to make the technology serve the researcher to make the content easy to find, to make the research tools efficient and effective, to allow researchers to customize their environment, to allow researchers to combine their own data with that of the HTRC, and to allow researchers to contribute tools. The architecture has multiple layers of abstraction providing a secure, scalable, extendable, and generalizable interface for both human and computational users.

DOI: 10.4018/978-1-4666-4699-5.ch011

## INTRODUCTION

Big Data is big news. The data deluge of scientific research data, social media data, and financial/ commercial data is now mainstream. It is discussed in the public press, studied in academic situations, and exploited by entrepreneurs (Press, 2013). Until very recently, the humanities have not been included in the digital data wave (Anderson, 2007). However, the state of humanities research is undergoing a major transformation (Drucker, 2009; Dunn & Blanke, 2009). Digitally-based research methodologies are becoming more widely used and accepted in the humanities (Borgman, 2009). Big data is just becoming available for humanists (Manovich, 2012).

The initial efforts at doing in silico humanities research were personal projects of forward-looking researchers (Dunn & Blanke, 2009). These initial efforts entailed digital scholarly editions (Newman, 2013; Walsh, 2013), specialized applications for specific research projects (Walsh & Hooper, 2012), and specialized applications for a specific research domain (Almas et al., 2011). Some of these initiatives evolved into community-based efforts to develop a set of standards for text encoding that became the focus of much of the digital humanities work for the past 10 years (Drucker, 2009). Institutional support for digital humanities includes the trend towards Digital Humanities Centers in colleges and universities. Many of these centers have not been as successful as initially expected due to the resource intensive nature of digital humanities projects such as text digitization and encoding or specialty applications development (Borgman, 2009). Cross-institutional activities, including funding agency initiatives to develop shared technical infrastructures, have had mixed results (Friedlander, 2009). All of these efforts have not provided the desired results. Infrastructure for digital humanities remains unavailable to many researchers (Borgman, 2009).

This chapter describes the research efforts to create a cyberinfrastructure to support Big Data

for digital humanities. In the sections that follow, the need for this research is placed in the context of digital humanities and cyberinfrastructure research, the nature of data in the humanities is discussed, the HathiTrust Research Center (HTRC) is introduced, the cyberinfrastructure research is described, and the architecture is explicated.

## BACKGROUND

# Digital Libraries and Digital Humanities

Digital Humanities encompasses many types of research domains, methodologies, and data types (Manovich, 2012). However, much of the work in digital humanities deals with textual data (Crane, 2006; Drucker, 2009; Unsworth, Rosenzweig, Courant, Frasier & Henry, 2006). Until very recently, the biggest barrier to digital humanities was getting textual data in digital form; digitizing materials or negotiating for access to digital materials was the first step in most digital humanities projects (Cunningham, 2011; Pitti, 2004). With the advent of massive digitizing efforts by many libraries and by Google, digital data for researchers in the humanities is now becoming available (Cunningham, 2011; Svensson, 2010; Williford & Henry, 2012). These digital libraries offer services to researchers that include bibliographic and full text searching, results management, metadata, and text and image displays. In addition, some digital libraries can provide specialized or advanced functionality to specific communities of users within the scope and mission of the library (Candela et al., 2011).

Digital libraries vary in size and scope. Small and narrowly scoped collections may have begun as digital humanities projects. These digital research collections result in a resource that is indistinguishable from a digital library (Pitti, 2004). Two such projects are the Chymistry of Isaac Newton and the Perseus Digital Library. 23 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/big-data-at-scale-for-digital-humanities/85459

## **Related Content**

#### Simultaneous Database Backup Using TCP/IP and a Specialized Network Interface Card

Scott J. Lloyd, Joan Peckham, Jian Liand Qing (Ken) Yang (2005). Advanced Topics in Database Research, Volume 4 (pp. 108-129).

www.irma-international.org/chapter/simultaneous-database-backup-using-tcp/4370

#### Object-Process Methodology Applied to Modeling Credit Card Transactions

Dov Dori (2002). Advanced Topics in Database Research, Volume 1 (pp. 87-105). www.irma-international.org/chapter/object-process-methodology-applied-modeling/4323

### A Case Study Evaluation of the Use of the Viable System Model in Information Systems Development

P. Kawalekand D.G. Wastell (1999). *Journal of Database Management (pp. 24-32).* www.irma-international.org/article/case-study-evaluation-use-viable/51224

## Modeling and Optimization of Multi-Model Waste Vehicle Routing Problem Based on the Time Window

Hongjie Wan, Junchen Ma, Qiumei Yu, Guozi Sun, Hansen Heand Huakang Li (2023). *Journal of Database Management (pp. 1-16).* 

www.irma-international.org/article/modeling-and-optimization-of-multi-model-waste-vehicle-routing-problem-based-on-the-time-window/321543

#### E-Mail Data Stores

Catherine Horiuchi (2005). Encyclopedia of Database Technologies and Applications (pp. 211-215). www.irma-international.org/chapter/mail-data-stores/11148