IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Cyber Sensor Model for Cyber-Physical-Social Systems

A Cyber Sensor Model for Cyber-Physical-Social Systems
View Sample PDF
Author(s): Olga Murdoch (University College Dublin, Ireland), Michael J. O'Grady (University College Dublin, Ireland)and Gregory M. P. O'Hare (University College Dublin, Ireland)
Copyright: 2021
Volume: 12
Issue: 1
Pages: 15
Source title: International Journal of Agricultural and Environmental Information Systems (IJAEIS)
Editor(s)-in-Chief: Frederic Andres (National Institute of Informatics, Japan), Chutiporn Anutariya (Asian Institute of Technology, Thailand), Teeradaj Racharak (Japan Advanced Institute of Science and Technology, Japan)and Watanee Jearanaiwongkul (National institute of Informatics, Japan)
DOI: 10.4018/IJAEIS.20210101.oa6

Purchase

View A Cyber Sensor Model for Cyber-Physical-Social Systems on the publisher's website for pricing and purchasing information.

Abstract

Engineering sustainable cyber-physical-social systems demand a transdisciplinary approach. Within an arbitrary domain, many systems, including those of the physical and cyber categories, may already be in-situ; however, heterogeneity permeates such systems, for example, differing protocols, data formats, among others. Heterogeneity is not a deliberate feature of an arbitrary system; rather, it is the cumulative result of pragmatic decisions that were made during design and is driven by many different factors, some of which may not be technological. Nonetheless, heterogeneity represents a critical obstacle for system designers as they seek to harness and integrate diverse system elements to deliver innovative services. This obstacle is acutely manifested in cyber-physical-social systems when collecting and fusing data for evidence-based decision-making; social and human-derived data exacerbate the problem. This paper proposes a programming model for fusing information sources in cyber-physical-social systems. The efficacy of the model is validated via a usability analysis.

Related Content

Vincent Soulignac, François Pinet, Mathilde Bodelet, Hélène Gross. © 2023. 28 pages.
Haiying Liu, Yongcai Lai, Zhenhua Xu, Zhonliang Yang, Yanmin Yu, Ping Yan. © 2023. 12 pages.
Ren Wang. © 2023. 14 pages.
Daidyi Wang, Fengsong Zhang. © 2022. 15 pages.
Takahiro Kawamura, Tetsuo Katsuragi, Akio Kobayashi, Motoko Inatomi, Masataka Oshiro, Hisashi Eguchi. © 2022. 19 pages.
Cédric Baudrit, Patrice Buche, Nadine Leconte, Christophe Fernandez, Maëllis Belna, Geneviève Gésan-Guiziou. © 2022. 22 pages.
Jingfa Wang, Huishi Du. © 2022. 11 pages.
Body Bottom