IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Effect of Coating Bath Parameters on Properties of Electroless Nickel-Boron Alloy Coatings

Effect of Coating Bath Parameters on Properties of Electroless Nickel-Boron Alloy Coatings
View Sample PDF
Author(s): Manik Barman (Heritage Institute of Technology, India), Tapan Kumar Barman (Jadavpur University, India)and Prasanta Sahoo (Jadavpur University, India)
Copyright: 2022
Volume: 10
Issue: 1
Pages: 26
Source title: International Journal of Surface Engineering and Interdisciplinary Materials Science (IJSEIMS)
Editor(s)-in-Chief: J. Paulo Davim (University of Aveiro, Portugal)
DOI: 10.4018/IJSEIMS.2022010101

Purchase

View Effect of Coating Bath Parameters on Properties of Electroless Nickel-Boron Alloy Coatings on the publisher's website for pricing and purchasing information.

Abstract

Electroless nickel-boron binary coatings were obtained with various bath compositions to investigate the effect of bath parameters on tribological and mechanical behaviours of the coating. Characterisation of the coating for surface morphology and phase structure is done using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD), respectively, whereas tribological behaviour of coatings is evaluated on a pin-on-disc tribo-tester. Elastic modulus and surface hardness of coatings have been obtained using nano-indentation technique, while the scratch behaviour of the coatings has been determined using micro-scratch test. Corrosion resistance of coatings is also determined. It is observed that surface roughness of the coatings increased with increase in sodium borohydride concentration but decreased slightly with increase in nickel chloride concentration. Friction and wear characteristics are found to increase with surface roughness which occurs due to increased boron content. Surface hardness and scratch hardness are also seen to vary with coating bath parameters.

Related Content

Meng-Ting Chiang, Pei-Ing Lee, Ang-Ying Lin, Tung-Han Chuang. © 2024. 11 pages.
Jean Claude Mallia, Anthea Agius Anastasi, Sophie Marie Briffa. © 2023. 20 pages.
Manik Barman, Tapan Kumar Barman, Prasanta Sahoo. © 2022. 26 pages.
Vinod Kumar V. Meti, G. U. Raju, I. G. Siddhalingeshwar, Vinayak Neelakanth Gaitonde. © 2022. 13 pages.
Sandeep Kumar Khatkar, Rajeev Verma, Suman Kant, Narendra Mohan Suri. © 2022. 19 pages.
Jason van Dyke, Michel Nganbe. © 2022. 19 pages.
Basant Lal, Abhijit Dey, Mohamamd Farooq Wani. © 2022. 12 pages.
Body Bottom