IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Prediction of Surface Roughness During Dry Sliding Wear: Characteristics of Ti-6Al-4V Alloys

Prediction of Surface Roughness During Dry Sliding Wear: Characteristics of Ti-6Al-4V Alloys
View Sample PDF
Author(s): Basant Lal (National Institute of Technology, Srinagar, India), Abhijit Dey (National Institute of Technology, Srinagar, India)and Mohamamd Farooq Wani (National Institute of Technology, Srinagar, India)
Copyright: 2022
Volume: 10
Issue: 1
Pages: 12
Source title: International Journal of Surface Engineering and Interdisciplinary Materials Science (IJSEIMS)
Editor(s)-in-Chief: J. Paulo Davim (University of Aveiro, Portugal)
DOI: 10.4018/IJSEIMS.2022010104

Purchase

View Prediction of Surface Roughness During Dry Sliding Wear: Characteristics of Ti-6Al-4V Alloys on the publisher's website for pricing and purchasing information.

Abstract

Due to the relatively low strength and poor wear resistance of unalloyed titanium and its good mechanical properties, corrosion resistance, and biocompatibility. Ti6Al4V has been extensively used in various type of application including aerospace, biomedical and offshore industries. The goal of this research is to enhance the surface properties of the high strength alloys are examine such as Ti6Al4V pin sliding against Al2O3disc, due to the various surfaces roughness parameters. The COF and the wear rate were found to be lower at higher applied load due to higher frictional heating leading to thermal oxidation and thereby formation of several mm thick tribo-layers on the worn surfaces. Characterization of the tribological sample was performed using a scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis (EDAX) to ensure that the wear pattern and debris morphologies of the Ti6Al4V and alumina disks were distinct, suggesting a surface roughness value determined by 3D profilometer at various load and sliding speed of 0.01ms-1.

Related Content

Meng-Ting Chiang, Pei-Ing Lee, Ang-Ying Lin, Tung-Han Chuang. © 2024. 11 pages.
Jean Claude Mallia, Anthea Agius Anastasi, Sophie Marie Briffa. © 2023. 20 pages.
Manik Barman, Tapan Kumar Barman, Prasanta Sahoo. © 2022. 26 pages.
Vinod Kumar V. Meti, G. U. Raju, I. G. Siddhalingeshwar, Vinayak Neelakanth Gaitonde. © 2022. 13 pages.
Sandeep Kumar Khatkar, Rajeev Verma, Suman Kant, Narendra Mohan Suri. © 2022. 19 pages.
Jason van Dyke, Michel Nganbe. © 2022. 19 pages.
Basant Lal, Abhijit Dey, Mohamamd Farooq Wani. © 2022. 12 pages.
Body Bottom