IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Research on the Influence of Dust and Ambient Temperature on the Power of Photovoltaic Cells Based on the Regression Method

Research on the Influence of Dust and Ambient Temperature on the Power of Photovoltaic Cells Based on the Regression Method
View Sample PDF
Author(s): Sumit Sharma (Department of Mechanical Engineering, ACEIT, India), Ashish Nayyar (Department of Mechanical Engineering, SKIT, India)and Kamal Kishore Khatri (Department of Mechanical-Mechatronics Engineering, LNMIIT, India)
Copyright: 2021
Volume: 10
Issue: 2
Pages: 24
Source title: International Journal of Energy Optimization and Engineering (IJEOE)
Editor(s)-in-Chief: Jose Marmolejo-Saucedo (National Autonomous University of Mexico), Gerhard-Wilhelm Weber (Poznań University of Technology, Poland)and Pandian Vasant (Ton Duc Thang University, Vietnam)
DOI: 10.4018/IJEOE.2021040102

Purchase


Abstract

Solar energy has huge potential and offers a solution to fulfill the demand for energy and reduce fossil fuel emissions. An effort had been made for assessing the effects of dust accumulation and ambient temperature on module conversion efficiency of 62 KWp grid connected rooftop solar plant. The performance parameters including open-circuit voltage, maximum voltage, short-circuit current, maximum current, etc. were collected and permitting for usual dust addition. These statistics were used for the estimation of the performance ratio (PR), capacity utilization factor (CUF), and power conversion efficiency. This work assesses the decrease in conversion efficiency of cell as a function of dust addition and ambient temperature. A multivariate linear regressions (MLR) model can forecast conversion efficiency closely, with R2 values close to 91%. It was employed in computing decrease in efficiency due to dust addition only. Result shows that the normal efficiency drops due to dust are 0.872%/day, energy harms are 9.935 kWh/m2 and Rs. 192.72 or 2.5 dollar per day by the MLR model.

Related Content

Vasudha Bahl, Anoop Bhola. © 2022. 26 pages.
Sunanda Hazra, Provas Kumar Roy. © 2022. 22 pages.
Andrey A. Kovalev, Dmitriy A. Kovalev, Victor S. Grigoriev, Vladimir Panchenko. © 2022. 17 pages.
Daniel Osezua Aikhuele, Ayodele A. Periola, Elijah Aigbedion, Herold U. Nwosu. © 2022. 20 pages.
Kawtar Tifidat, Noureddine Maouhoub, Abdelaaziz Benahmida. © 2022. 23 pages.
Nuno Domingues, Jorge Mendonça Costa, Rui Miguel Paulo. © 2022. 26 pages.
Abdelouadoud Loukriz, Djamel Saigaa, Abdelhammid Kherbachi, Mustapha Koriker, Ahmed Bendib, Mahmoud Drif. © 2022. 19 pages.
Body Bottom