IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Transient Stability Constrained Optimal Power Flow Using Teaching Learning Based Optimization

Transient Stability Constrained Optimal Power Flow Using Teaching Learning Based Optimization
View Sample PDF
Author(s): Aparajita Mukherjee (Department of Electrical Engineering, Indian School of Mines, Dhanbad, India), Sourav Paul (Department of Electrical Engineering, Dr. B. C. Roy Engineering College, Durgapur, India)and Provas Kumar Roy (Department of Electrical Engineering, Jalpaiguri Government Engineering College, Jalpaiguri, India)
Copyright: 2015
Volume: 4
Issue: 1
Pages: 18
Source title: International Journal of Energy Optimization and Engineering (IJEOE)
Editor(s)-in-Chief: Jose Marmolejo-Saucedo (National Autonomous University of Mexico), Gerhard-Wilhelm Weber (Poznań University of Technology, Poland)and Pandian Vasant (Ton Duc Thang University, Vietnam)
DOI: 10.4018/ijeoe.2015010102

Purchase

View Transient Stability Constrained Optimal Power Flow Using Teaching Learning Based Optimization on the publisher's website for pricing and purchasing information.

Abstract

Transient stability constrained optimal power flow (TSC-OPF) is a non-linear optimization problem which is not easy to deal directly because of its huge dimension. In order to solve the TSC-OPF problem efficiently, a relatively new optimization technique named teaching learning based optimization (TLBO) is proposed in this paper. TLBO algorithm simulates the teaching–learning phenomenon of a classroom to solve multi-dimensional, linear and nonlinear problems with appreciable efficiency. Like other nature-inspired algorithms, TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. The authors have explained in detail, the basic philosophy of this method. In this paper, the authors deal with the comparison of other optimization problems with TLBO in solving TSC-OPF problem. Case studies on IEEE 30-bus system WSCC 3-generator, 9-bus system and New England 10-generator, 39-bus system indicate that the proposed TLBO approach is much more computationally efficient than the other popular methods and is promising to solve TSC-OPF problem.

Related Content

Vasudha Bahl, Anoop Bhola. © 2022. 26 pages.
Sunanda Hazra, Provas Kumar Roy. © 2022. 22 pages.
Andrey A. Kovalev, Dmitriy A. Kovalev, Victor S. Grigoriev, Vladimir Panchenko. © 2022. 17 pages.
Daniel Osezua Aikhuele, Ayodele A. Periola, Elijah Aigbedion, Herold U. Nwosu. © 2022. 20 pages.
Kawtar Tifidat, Noureddine Maouhoub, Abdelaaziz Benahmida. © 2022. 23 pages.
Nuno Domingues, Jorge Mendonça Costa, Rui Miguel Paulo. © 2022. 26 pages.
Abdelouadoud Loukriz, Djamel Saigaa, Abdelhammid Kherbachi, Mustapha Koriker, Ahmed Bendib, Mahmoud Drif. © 2022. 19 pages.
Body Bottom