IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Novel Approach of K-SVD-Based Algorithm for Image Denoising

A Novel Approach of K-SVD-Based Algorithm for Image Denoising
View Sample PDF
Author(s): Madhu Golla (VNR Vignana Jyothi Institute and Engineering and Technology, India) and Sudipta Rudra (VNR Vignana Jyothi Institute and Engineering and Technology, India)
Copyright: 2019
Pages: 27
Source title: Histopathological Image Analysis in Medical Decision Making
Source Author(s)/Editor(s): Nilanjan Dey (Techno India College of Technology, India), Amira S. Ashour (Tanta University, Egypt), Harihar Kalia (Seemantha Engineering College, India), R.T. Goswami (Techno India College of Technology, India) and Himansu Das (KIIT University, India)
DOI: 10.4018/978-1-5225-6316-7.ch007

Purchase

View A Novel Approach of K-SVD-Based Algorithm for Image Denoising on the publisher's website for pricing and purchasing information.

Abstract

In recent years, denoising has played an important role in medical image analysis. Image denoising is still accepted as a challenge for researchers and image application developers in medical image applications. The idea is to denoise a microscopic image through over-complete dictionary learning using a k-means algorithm and singular value decomposition (K-SVD) based on pursuit methods. This approach is good in performance on the quality improvement of the medical images, but it has low computational speed with high computational complexity. In view of the above limitations, this chapter proposes a novel strategy for denoising insight phenomena of the K-SVD algorithm. In addition, the authors utilize the technology of improved dictionary learning of the image patches using heap sort mechanism followed by dictionary updating process. The experimental results validate that the proposed approach successfully reduced noise levels on various test image datasets. This has been found to be more accurate than the best in class denoising approaches.

Related Content

Amy Moy. © 2022. 19 pages.
Kristen L. Kerber. © 2022. 11 pages.
Kristen L. Kerber. © 2022. 12 pages.
Gayathri Srinivasan. © 2022. 23 pages.
Jacky K. W. Kong. © 2022. 19 pages.
Iason Mantagos. © 2022. 11 pages.
M. H. Esther Han. © 2022. 29 pages.
Body Bottom