IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Approaches and Applications for Sentiment Analysis: A Literature Review

Approaches and Applications for Sentiment Analysis: A Literature Review
View Sample PDF
Author(s): M. Govindarajan (Annamalai University, India)
Copyright: 2022
Pages: 23
Source title: Data Mining Approaches for Big Data and Sentiment Analysis in Social Media
Source Author(s)/Editor(s): Brij B. Gupta (Asia University, Taiwan), Dragan Peraković (University of Zagreb, Croatia), Ahmed A. Abd El-Latif (Menoufia University, Egypt) and Deepak Gupta (LoginRadius Inc., Canada)
DOI: 10.4018/978-1-7998-8413-2.ch001

Purchase

View Approaches and Applications for Sentiment Analysis: A Literature Review on the publisher's website for pricing and purchasing information.

Abstract

With the increasing penetration of the internet, an ever-growing number of people are voicing their opinions in the numerous blogs, tweets, forums, social networking, and consumer review websites. Each such opinion has a sentiment (positive, negative, or neutral) associated with it. But the problem is that the amount of data is simply overwhelming. Methods like supervised machine learning and lexical-based approaches are available for measuring sentiments that have a huge volume of opinionated data recorded in digital form for analysis. Sentiment analysis has been used in several applications including analysis of the repercussions of events in social networks, analysis of opinions about products and services. This chapter presents sentiment analysis applications and challenges with their approaches and tools. The techniques and applications discussed in this chapter will provide a clear-cut idea to the sentiment analysis researchers to carry out their work in this field.

Related Content

M. Govindarajan. © 2022. 23 pages.
Rajab Ssemwogerere, Wamwoyo Faruk, Nambobi Mutwalibi. © 2022. 33 pages.
Surabhi Verma, Ankit Kumar Jain. © 2022. 34 pages.
Kriti Aggarwal, Sunil K. Singh, Muskaan Chopra, Sudhakar Kumar. © 2022. 25 pages.
Praneeth Gunti, Brij B. Gupta, Elhadj Benkhelifa. © 2022. 26 pages.
Yin-Chun Fung, Lap-Kei Lee, Kwok Tai Chui, Gary Hoi-Kit Cheung, Chak-Him Tang, Sze-Man Wong. © 2022. 13 pages.
Lap-Kei Lee, Kwok Tai Chui, Jingjing Wang, Yin-Chun Fung, Zhanhui Tan. © 2022. 16 pages.
Body Bottom