IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Artificial Neural Network and Its Application in Steel Industry

Artificial Neural Network and Its Application in Steel Industry
View Sample PDF
Author(s): Itishree Mohanty (Tata Steel Limited, India) and Dabashish Bhattacherjee (Tata Steel Limited, The Netherlands)
Copyright: 2017
Pages: 34
Source title: Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-0788-8.ch007

Purchase

View Artificial Neural Network and Its Application in Steel Industry on the publisher's website for pricing and purchasing information.

Abstract

The recent developments in computational intelligence has enhances the applicability of empirical modelling in different areas particularly in the area of machine learning. These new approaches are based on analysing the data about a system, in particular finding connections between the system state variables (input, internal and output variables) without having precise knowledge about the physical behaviour of the system. These data driven methods explain advances on conventional empirical modelling and include contributions from many overlapping fields like Artificial Intelligence (AI), Computational Intelligence (CI), Soft Computing (SC), Machine Learning (ML), Intelligent Data Analysis (IDA), and Data Mining (DM). The most popular computational intelligence techniques used in process modelling of steel industry includes neural networks, fuzzy rule-based systems, genetic algorithms as well as approaches to model integration. This chapter describes mainly the application of Artificial Neural Network (ANN) in steel industry. ANN has extensively used in improving and controlling different processes of steel industry like steel making, casting and rolling which lead to indirect energy savings through reduced product rejects, improved productivity and reduced down time. The efficiency of artificial neural network tool in handling steel plant processes has been discussed in detail. ANN based models are found to be very potential to handle very complex, dynamic and non-linear problems.

Related Content

Mohamed Arezki Mellal. © 2022. 9 pages.
Tahir Cetin Akinci, Ramazan Caglar, Gokhan Erdemir, Aydin Tarik Zengin, Serhat Seker. © 2022. 11 pages.
Sunanda Hazra, Provas Kumar Roy. © 2022. 16 pages.
Ragab A. El-Sehiemy, Almoataz Y. Abdelaziz. © 2022. 23 pages.
Khaled Dassa, Abdelmadjid Recioui. © 2022. 35 pages.
Anupama Kumari, Mukund Madhaw, C. B. Majumder, Amit Arora. © 2022. 21 pages.
Mandrita Mondal. © 2022. 20 pages.
Body Bottom