IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Bayesian Network Approach to Estimate Gene Networks

Bayesian Network Approach to Estimate Gene Networks
View Sample PDF
Author(s): Seiya Imoto (University of Tokyo, Japan)
Copyright: 2009
Pages: 25
Source title: Medical Informatics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Joseph Tan (McMaster University, Canada)
DOI: 10.4018/978-1-60566-050-9.ch173

Purchase

View Bayesian Network Approach to Estimate Gene Networks on the publisher's website for pricing and purchasing information.

Abstract

In cells, genes interact with each other and this system can be viewed as directed graphs. A gene network is a graphical representation of transcriptional relations between genes and the problem of estimation of gene networks from genome-wide data, such as DNA microarray gene expression data, is one of the important issues in bioinformatics and systems biology. Here, we present a statistical method based on Bayesian networks to estimate gene networks from microarray data and other biological data. Because microarray data are measured as continuous variables and the relationship between genes are usually nonlinear, we combine Bayesian networks and nonparametric regression to handle continuous variables and nonlinear relations. Most parts of gene networks are still unknown, and we need to estimate them from observational data. This problem is equivalent to the structural learning of Bayesian networks, and we solve it from a Bayes approach. The main difficulty of gene network estimation is due to the number of genes involved in the network. Therefore, it leads to model overfitting to the observational data like microarray data. Hence, a combination of various kinds of biological data is a key technique to estimate accurate gene networks. We show a general framework to combine microarray data and other biological information to estimate gene networks.

Related Content

David Edson Ribeiro, Valter Augusto de Freitas Barbosa, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 15 pages.
Juliana Carneiro Gomes, Maíra Araújo de Santana, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 12 pages.
Maíra Araújo de Santana, Jessiane Mônica Silva Pereira, Clarisse Lins de Lima, Maria Beatriz Jacinto de Almeida, José Filipe Silva de Andrade, Thifany Ketuli Silva de Souza, Rita de Cássia Fernandes de Lima, Wellington Pinheiro dos Santos. © 2021. 19 pages.
Jessiane Mônica Silva Pereira, Maíra Araújo de Santana, Clarisse Lins de Lima, Rita de Cássia Fernandes de Lima, Sidney Marlon Lopes de Lima, Wellington Pinheiro dos Santos. © 2021. 25 pages.
Adriel dos Santos Araujo, Roger Resmini, Maira Beatriz Hernandez Moran, Milena Henriques de Sousa Issa, Aura Conci. © 2021. 35 pages.
Abir Baâzaoui, Walid Barhoumi. © 2021. 21 pages.
Marcus Costa de Araújo, Luciete Alves Bezerra, Kamila Fernanda Ferreira da Cunha Queiroz, Nadja A. Espíndola, Ladjane Coelho dos Santos, Francisco George S. Santos, Rita de Cássia Fernandes de Lima. © 2021. 44 pages.
Body Bottom