IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Cosine and Sigmoid Higher Order Neural Networks for Data Simulations

Cosine and Sigmoid Higher Order Neural Networks for Data Simulations
View Sample PDF
Author(s): Ming Zhang (Christopher Newport University, USA)
Copyright: 2017
Pages: 16
Source title: Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-0788-8.ch029

Purchase

View Cosine and Sigmoid Higher Order Neural Networks for Data Simulations on the publisher's website for pricing and purchasing information.

Abstract

New open box and nonlinear model of Cosine and Sigmoid Higher Order Neural Network (CS-HONN) is presented in this paper. A new learning algorithm for CS-HONN is also developed from this study. A time series data simulation and analysis system, CS-HONN Simulator, is built based on the CS-HONN models too. Test results show that average error of CS-HONN models are from 2.3436% to 4.6857%, and the average error of Polynomial Higher Order Neural Network (PHONN), Trigonometric Higher Order Neural Network (THONN), and Sigmoid polynomial Higher Order Neural Network (SPHONN) models are from 2.8128% to 4.9077%. It means that CS-HONN models are 0.1174% to 0.4917% better than PHONN, THONN, and SPHONN models.

Related Content

Mohamed Arezki Mellal. © 2022. 9 pages.
Tahir Cetin Akinci, Ramazan Caglar, Gokhan Erdemir, Aydin Tarik Zengin, Serhat Seker. © 2022. 11 pages.
Sunanda Hazra, Provas Kumar Roy. © 2022. 16 pages.
Ragab A. El-Sehiemy, Almoataz Y. Abdelaziz. © 2022. 23 pages.
Khaled Dassa, Abdelmadjid Recioui. © 2022. 35 pages.
Anupama Kumari, Mukund Madhaw, C. B. Majumder, Amit Arora. © 2022. 21 pages.
Mandrita Mondal. © 2022. 20 pages.
Body Bottom