IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Information Retrieval by Semantic Similarity

Information Retrieval by Semantic Similarity
View Sample PDF
Author(s): Angelos Hliaoutakis (Technical University of Crete (TUC), Greece), Giannis Varelas (Technical University of Crete (TUC), Greece), Epimenidis Voutsakis (Technical University of Crete (TUC), Greece), Euripides G.M. Petrakis (Technical University of Crete (TUC), Greece) and Evangelos Milios (Dalhousie University, Canada)
Copyright: 2009
Pages: 19
Source title: Medical Informatics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Joseph Tan (McMaster University, Canada)
DOI: 10.4018/978-1-60566-050-9.ch048

Purchase

View Information Retrieval by Semantic Similarity on the publisher's website for pricing and purchasing information.

Abstract

Semantic Similarity relates to computing the similarity between conceptually similar but not necessarily lexically similar terms. Typically, semantic similarity is computed by mapping terms to an ontology and by examining their relationships in that ontology. We investigate approaches to computing the semantic similarity between natural language terms (using WordNet as the underlying reference ontology) and between medical terms (using the MeSH ontology of medical and biomedical terms). The most popular semantic similarity methods are implemented and evaluated using WordNet and MeSH. Building upon semantic similarity, we propose the Semantic Similarity based Retrieval Model (SSRM), a novel information retrieval method capable for discovering similarities between documents containing conceptually similar terms. The most effective semantic similarity method is implemented into SSRM. SSRM has been applied in retrieval on OHSUMED (a standard TREC collection available on the Web). The experimental results demonstrated promising performance improvements over classic information retrieval methods utilizing plain lexical matching (e.g., Vector Space Model) and also over state-of-theart semantic similarity retrieval methods utilizing ontologies.

Related Content

David Edson Ribeiro, Valter Augusto de Freitas Barbosa, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 15 pages.
Juliana Carneiro Gomes, Maíra Araújo de Santana, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 12 pages.
Maíra Araújo de Santana, Jessiane Mônica Silva Pereira, Clarisse Lins de Lima, Maria Beatriz Jacinto de Almeida, José Filipe Silva de Andrade, Thifany Ketuli Silva de Souza, Rita de Cássia Fernandes de Lima, Wellington Pinheiro dos Santos. © 2021. 19 pages.
Jessiane Mônica Silva Pereira, Maíra Araújo de Santana, Clarisse Lins de Lima, Rita de Cássia Fernandes de Lima, Sidney Marlon Lopes de Lima, Wellington Pinheiro dos Santos. © 2021. 25 pages.
Adriel dos Santos Araujo, Roger Resmini, Maira Beatriz Hernandez Moran, Milena Henriques de Sousa Issa, Aura Conci. © 2021. 35 pages.
Abir Baâzaoui, Walid Barhoumi. © 2021. 21 pages.
Marcus Costa de Araújo, Luciete Alves Bezerra, Kamila Fernanda Ferreira da Cunha Queiroz, Nadja A. Espíndola, Ladjane Coelho dos Santos, Francisco George S. Santos, Rita de Cássia Fernandes de Lima. © 2021. 44 pages.
Body Bottom