IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Knowledge Processing Using EKRL for Robotic Applications

Knowledge Processing Using EKRL for Robotic Applications
View Sample PDF
Author(s): Omar Adjali (Paris-Saclay- UVSQ-LISV, France)and Amar Ramdane-Cherif (Paris-Saclay- UVSQ-LISV, France)
Copyright: 2020
Pages: 24
Source title: Robotic Systems: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-1754-3.ch022

Purchase

View Knowledge Processing Using EKRL for Robotic Applications on the publisher's website for pricing and purchasing information.

Abstract

This article describes a semantic framework that demonstrates an approach for modeling and reasoning based on environment knowledge representation language (EKRL) to enhance interaction between robots and their environment. Unlike EKRL, standard Binary approaches like OWL language fails to represent knowledge in an expressive way. The authors show in this work how to: model environment and interaction in an expressive way with first-order and second-order EKRL data-structures, and reason for decision-making thanks to inference capabilities based on a complex unification algorithm. This is with the understanding that robot environments are inherently subject to noise and partial observability, the authors extended EKRL framework with probabilistic reasoning based on Markov logic networks to manage uncertainty.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom