Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Machine Learning Assessment System for Modeling Patterns of Student Learning

Machine Learning Assessment System for Modeling Patterns of Student Learning
View Sample PDF
Author(s): Ron Stevens (UCLA IMMEX Project, USA)
Copyright: 2007
Pages: 17
Source title: Games and Simulations in Online Learning: Research and Development Frameworks
Source Author(s)/Editor(s): David Gibson (University of Vermont, USA), Clark Aldrich (SimuLearn Inc., USA) and Marc Prensky (games2train, USA)
DOI: 10.4018/978-1-59904-304-3.ch017


View Machine Learning Assessment System for Modeling Patterns of Student Learning on the publisher's website for pricing and purchasing information.


We have developed and validated layered analytic models of how high school and university students construct, modify and retain problem solving strategies as they learn to solve science problems online. First, item response theory modeling is used to provide continually refined estimates of problem solving ability as students solve a series of simulations. In parallel, student’s strategies are modeled by self-organizing artificial neural network analysis, using the actions that students take during problem solving as the classifying inputs. This results in strategy maps detailing the qualitative and quantitative differences among problem solving approaches. Hidden Markov Modeling then develops learning trajectories across sequences of performances and results in stochastic models of problem solving progress across sequential strategic stages in the learning process. Using this layered analytical approach we have found that students quickly adopt preferential problem solving strategies, and continue to use them up to four months later. Furthermore, the approach has shown that students working in groups solve a higher percentage of the problems, stabilize their strategic approaches quicker, and use a more limited repertoire of strategies than do students working alone.

Related Content

Tuncay Dilci, Anıl Kadir Eranıl. © 2019. 10 pages.
Mustafa Ersoy. © 2019. 13 pages.
Tamara L. Wandel. © 2019. 17 pages.
Bahadir Köksalan, Umit Ferit Aldım, Şahin Göğebakan. © 2019. 19 pages.
Tuğba Akdal. © 2019. 12 pages.
Armoni Bayar. © 2019. 17 pages.
Gülşah Sarı. © 2019. 16 pages.
Body Bottom