The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Measuring the Effects of Data Mining on Inference
Abstract
Data mining is a term used to describe various types of exploratory data analysis whose purposes are to select data models, estimate model parameters, and generate hypotheses that can be tested on future data. It is known that model predictions are overly optimistic when generated from the same data that are used to select a model and estimate its parameters. Therefore, most statistical procedures assume that the data model is selected prior to data collection. Alternatively, to adjust for data mining, we describe steps that should be taken to account for “choosing the best” among many candidate models.
Related Content
Yair Wiseman.
© 2021.
11 pages.
|
Mário Pereira Véstias.
© 2021.
15 pages.
|
Mahfuzulhoq Chowdhury, Martin Maier.
© 2021.
15 pages.
|
Gen'ichi Yasuda.
© 2021.
12 pages.
|
Alba J. Jerónimo, María P. Barrera, Manuel F. Caro, Adán A. Gómez.
© 2021.
19 pages.
|
Gregor Donaj, Mirjam Sepesy Maučec.
© 2021.
14 pages.
|
Udit Singhania, B. K. Tripathy.
© 2021.
11 pages.
|
|
|