IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Overview of Business Intelligence through Data Mining

Overview of Business Intelligence through Data Mining
View Sample PDF
Author(s): Abdulrahman R. Alazemi (Kuwait University, Kuwait) and Abdulaziz R. Alazemi (Kuwait University, Kuwait)
Copyright: 2014
Pages: 24
Source title: Data Mining and Analysis in the Engineering Field
Source Author(s)/Editor(s): Vishal Bhatnagar (Ambedkar Institute of Advanced Communication Technologies and Research, India)
DOI: 10.4018/978-1-4666-6086-1.ch015

Purchase

View Overview of Business Intelligence through Data Mining on the publisher's website for pricing and purchasing information.

Abstract

The advent of information technologies brought with it the availability of huge amounts of data to be utilized by enterprises. Data mining technologies are used to search vast amounts of data for vital insight regarding business. Data mining is used to acquire business intelligence and to acquire hidden knowledge in large databases or the Internet. Business intelligence can find hidden relations, predict future outcomes, and speculate and allocate resources. This uncovered knowledge helps in gaining competitive advantages, better customer relationships, and even fraud detection. In this chapter, the authors describe how data mining is used to achieve business intelligence. Furthermore, they look into some of the challenges in achieving business intelligence.

Related Content

M. Govindarajan. © 2022. 23 pages.
Rajab Ssemwogerere, Wamwoyo Faruk, Nambobi Mutwalibi. © 2022. 33 pages.
Surabhi Verma, Ankit Kumar Jain. © 2022. 34 pages.
Kriti Aggarwal, Sunil K. Singh, Muskaan Chopra, Sudhakar Kumar. © 2022. 25 pages.
Praneeth Gunti, Brij B. Gupta, Elhadj Benkhelifa. © 2022. 26 pages.
Yin-Chun Fung, Lap-Kei Lee, Kwok Tai Chui, Gary Hoi-Kit Cheung, Chak-Him Tang, Sze-Man Wong. © 2022. 13 pages.
Lap-Kei Lee, Kwok Tai Chui, Jingjing Wang, Yin-Chun Fung, Zhanhui Tan. © 2022. 16 pages.
Body Bottom