IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Perceptual Semantics

Perceptual Semantics
View Sample PDF
Author(s): Andrea Cavallaro (Queen Mary University of London, UK) and Stefan Winkler (National Singapore University and Genista Corporation, Singapore)
Copyright: 2008
Pages: 15
Source title: Multimedia Technologies: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Mahbubur Rahman Syed (Minnesota State University Mankato, USA)
DOI: 10.4018/978-1-59904-953-3.ch105

Purchase

View Perceptual Semantics on the publisher's website for pricing and purchasing information.

Abstract

The design of image and video compression or transmission systems is driven by the need for reducing the bandwidth and storage requirements of the content while maintaining its visual quality. Therefore, the objective is to define codecs that maximize perceived quality as well as automated metrics that reliably measure perceived quality. One of the common shortcomings of traditional video coders and quality metrics is the fact that they treat the entire scene uniformly, assuming that people look at every pixel of the image or video. In reality, we focus only on particular areas of the scene. In this chapter, we prioritize the visual data accordingly in order to improve the compression performance of video coders and the prediction performance of perceptual quality metrics. The proposed encoder and quality metric incorporate visual attention and use a semantic segmentation stage, which takes into account certain aspects of the cognitive behavior of people when watching a video. This semantic model corresponds to a specific human abstraction, which need not necessarily be characterized by perceptual uniformity. In particular, we concentrate on segmenting moving objects and faces, and we evaluate the perceptual impact on video coding and on quality evaluation.

Related Content

K. Jairam Naik, Annukriti Soni. © 2021. 18 pages.
Randhir Kumar, Rakesh Tripathi. © 2021. 22 pages.
Yogesh Kumar Gupta. © 2021. 38 pages.
Kamel H. Rahouma, Ayman A. Ali. © 2021. 34 pages.
Muni Sekhar Velpuru. © 2021. 19 pages.
Vijayakumari B.. © 2021. 24 pages.
Neetu Faujdar, Anant Joshi. © 2021. 41 pages.
Body Bottom