IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Preparing Clinical Text for Use in Biomedical Research

Preparing Clinical Text for Use in Biomedical Research
View Sample PDF
Author(s): John P. Pestian (Cincinnati Children’s Hospital Medical Center, University of Cincinnati, USA), Lukasz Itert (Nicolaus Copernicus University, Torun, Poland) and Charlotte Andersen (Cincinnati Children’s Hospital Medical Center, University of Cincinnati, US)
Copyright: 2009
Pages: 11
Source title: Medical Informatics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Joseph Tan (McMaster University, Canada)
DOI: 10.4018/978-1-60566-050-9.ch159

Purchase

View Preparing Clinical Text for Use in Biomedical Research on the publisher's website for pricing and purchasing information.

Abstract

Approximately 57 different types of clinical annotations construct a patient’s medical record. These annotations include radiology reports, discharge summaries, and surgical and nursing notes. Hospitals typically produce millions of text-based medical records over the course of a year. These records are essential for the delivery of care, but many are underutilized or not utilized at all for clinical research. The textual data found in these annotations is a rich source of insights into aspects of clinical care and the clinical delivery system. Recent regulatory actions, however, require that, in many cases, data not obtained through informed consent or data not related to the delivery of care must be made anonymous (as referred to by regulators as harmless), before they can be used. This article describes a practical approach with which Cincinnati Children’s Hospital Medical Center (CCHMC), a large pediatric academic medical center with more than 761,000 annual patient encounters, developed open source software for making pediatric clinical text harmless without losing its rich meaning. Development of the software dealt with many of the issues that often arise in natural language processing, such as data collection, disambiguation, and data scrubbing.

Related Content

David Edson Ribeiro, Valter Augusto de Freitas Barbosa, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 15 pages.
Juliana Carneiro Gomes, Maíra Araújo de Santana, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 12 pages.
Maíra Araújo de Santana, Jessiane Mônica Silva Pereira, Clarisse Lins de Lima, Maria Beatriz Jacinto de Almeida, José Filipe Silva de Andrade, Thifany Ketuli Silva de Souza, Rita de Cássia Fernandes de Lima, Wellington Pinheiro dos Santos. © 2021. 19 pages.
Jessiane Mônica Silva Pereira, Maíra Araújo de Santana, Clarisse Lins de Lima, Rita de Cássia Fernandes de Lima, Sidney Marlon Lopes de Lima, Wellington Pinheiro dos Santos. © 2021. 25 pages.
Adriel dos Santos Araujo, Roger Resmini, Maira Beatriz Hernandez Moran, Milena Henriques de Sousa Issa, Aura Conci. © 2021. 35 pages.
Abir Baâzaoui, Walid Barhoumi. © 2021. 21 pages.
Marcus Costa de Araújo, Luciete Alves Bezerra, Kamila Fernanda Ferreira da Cunha Queiroz, Nadja A. Espíndola, Ladjane Coelho dos Santos, Francisco George S. Santos, Rita de Cássia Fernandes de Lima. © 2021. 44 pages.
Body Bottom