IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Prototyping and Real-Time Implementation of Bipedal Humanoid Robots: Dynamically Equilibrated Multimodal Motion Generation

Prototyping and Real-Time Implementation of Bipedal Humanoid Robots: Dynamically Equilibrated Multimodal Motion Generation
View Sample PDF
Author(s): Barkan Ugurlu (Toyota Technological Institute, Japan)and Atsuo Kawamura (Yokohama National University, Japan)
Copyright: 2014
Pages: 36
Source title: Robotics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-4607-0.ch035

Purchase


Abstract

This chapter is aimed at describing a contemporary bipedal humanoid robot prototyping technology, accompanied with a mathematically rigorous method to generate real-time walking, jumping, and running trajectories that can be applied to this type of robots. The main strategy in this method is to maintain the overall dynamic equilibrium and to prevent undesired rotational actions for the purpose of smooth maneuvering capabilities while the robot is in motion. In order to reach this goal, Zero Moment Point criterion is utilized in spherical coordinates, so that it is possible to fully exploit its properties by the help of Euler’s equations of motions. Such a strategy allows for characterization of the rotational inertia and therefore the associated angular momentum rate change terms, so that undesired torso angle fluctuations during walking and running are well suppressed. It enables prevention of backwards-hopping actions during jumping as well. To validate the proposed approach, the authors performed simulations using a precise 3D simulator and conducted experiments on an actual bipedal robot. Results indicated that the method is superior to classical methods in terms of suppressing undesired rotational actions, such as torso angle fluctuations and backwards-hopping.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom