Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Robustness in Neural Networks

Robustness in Neural Networks
View Sample PDF
Author(s): Cesare Alippi (Politecnico di Milano, Italy), Manuel Roveri (Politecnico di Milano, Italy) and Giovanni Vanini (Politecnico di Milano, Italy)
Copyright: 2009
Pages: 8
Source title: Encyclopedia of Information Science and Technology, Second Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-60566-026-4.ch527


View Robustness in Neural Networks on the publisher's website for pricing and purchasing information.


The robustness analysis for neural networks aims at evaluating the influence on accuracy induced by perturbations affecting the computational flow; as such it allows the designer for estimating the resilience of the neural model w.r.t perturbations. In the literature, the robustness analysis of neural networks generally focuses on the effects of perturbations affecting biases and weights. The study of the network’s parameters is relevant both from the theoretical and the application point of view, since free parameters characterize the “knowledge space” of the neural model and, hence, its intrinsic functionality. A robustness analysis must also be taken into account when implementing a neural network (or the intelligent computational system into which a neural network is inserted) in a physical device or in intelligent wireless sensor networks. In these contexts, perturbations affecting the weights of a neural network abstract uncertainties such as finite precision representations, fluctuations of the parameters representing the weights in analog solutions (e.g., associated with the production process of a physical component), ageing effects or more complex, and subtle uncertainties in mixed implementations.

Related Content

Christine Kosmopoulos. © 2022. 22 pages.
Melkamu Beyene, Solomon Mekonnen Tekle, Daniel Gelaw Alemneh. © 2022. 21 pages.
Rajkumari Sofia Devi, Ch. Ibohal Singh. © 2022. 21 pages.
Ida Fajar Priyanto. © 2022. 16 pages.
Murtala Ismail Adakawa. © 2022. 27 pages.
Shimelis Getu Assefa. © 2022. 17 pages.
Angela Y. Ford, Daniel Gelaw Alemneh. © 2022. 22 pages.
Body Bottom