Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Rough Set Based Green Cloud Computing in Emerging Markets

Rough Set Based Green Cloud Computing in Emerging Markets
View Sample PDF
Author(s): P.S. Shivalkar (School of Computing Science and Engineering, VIT University, India)and B.K. Tripathy (School of Computing Science and Engineering, VIT University, India)
Copyright: 2015
Pages: 10
Source title: Encyclopedia of Information Science and Technology, Third Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-4666-5888-2.ch103


View Rough Set Based Green Cloud Computing in Emerging Markets on the publisher's website for pricing and purchasing information.


Cloud computing represents a paradigm shift and it can be applied to a wide range of areas, including e-commerce, health, education, communities, etc which are emerging as the important sectors in today's market. Day-by-day more knowledge is added to the Internet and is shared amongst the users over the cloud resulting in increase of energy consumption which needs to be managed. This usage can be brought into account for measuring and hence conserving the energy. The consumption is all together considered for the processing, storage and transport of the knowledge granules over the cloud. Since the data accessed in the cloud is “on-demand,” the prediction techniques like those using rough sets can be used to minimize the transfer of data over the cloud networks. The data over the cloud can be procured with the help of rough set based methods efficiently which can help in conserving the energy. In this chapter, we propose a neighbourhood based rough set approach, which is efficient in handling heterogeneous features for knowledge acquisition using MapReduce from BigData. Also, we discuss how green cloud computing can be helpful in increasing the efficiency of emerging markets. Some future trends researches have also been proposed.

Related Content

Yair Wiseman. © 2021. 11 pages.
Mário Pereira Véstias. © 2021. 15 pages.
Mahfuzulhoq Chowdhury, Martin Maier. © 2021. 15 pages.
Gen'ichi Yasuda. © 2021. 12 pages.
Alba J. Jerónimo, María P. Barrera, Manuel F. Caro, Adán A. Gómez. © 2021. 19 pages.
Gregor Donaj, Mirjam Sepesy Maučec. © 2021. 14 pages.
Udit Singhania, B. K. Tripathy. © 2021. 11 pages.
Body Bottom