IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Self Control and Server-Supervisory Control for Multiple Mobile Robots and its Applicability to Intelligent DNC System

Self Control and Server-Supervisory Control for Multiple Mobile Robots and its Applicability to Intelligent DNC System
View Sample PDF
Author(s): F. Nagata (Tokyo University of Science, Japan), T. Yamashiro (Tokyo University of Science, Japan), N. Kitahara (Tokyo University of Science, Japan), A. Otsuka (Tokyo University of Science, Japan), K. Watanabe (Okayama University, Japan)and Maki K. Habib (The American University in Cairo, Egypt)
Copyright: 2014
Pages: 16
Source title: Robotics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-4607-0.ch019

Purchase


Abstract

Multiple mobile robots with six PSD (Position Sensitive Detector) sensors are designed for experimentally evaluating the performance of two control systems. They are self-control mode and server-supervisory control mode. The control systems are considered to realize swarm behaviors such as Ligia exotica. This is done by using only information of PSD sensors. Experimental results show basic but important behaviors for multiple mobile robots. They are following, avoidance, and schooling behaviors. The collective behaviors such as following, avoidance, and schooling emerge from the local interactions among the robots and/or between the robots and the environment. The objective of the study is to design an actual system for multiple mobile robots, to systematically simulate the behaviors of various creatures who form groups such as a school of fish or a swarm of insect. Further, the applicability of the server-supervisory control scheme to an intelligent DNC (Direct Numerical Control) system is briefly considered for future development. DNC system is an important peripheral apparatus, which can directly control NC machine tools. However, conventional DNC systems can neither deal with various information transmitted from different kinds of sensors through wireless communication nor output suitable G-codes by analyzing the sensors information in real time. The intelligent DNC system proposed at the end of the chapter aims to realize such a novel and flexible function with low cost.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom