The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Simulation Model of Ant Colony Optimization for the FJSSP
|
Author(s): Li-Ning Xing (National University of Defense Technology, China), Ying-Wu Chen (National University of Defense Technology, China) and Ke-Wei Yang (National University of Defense Technology, China)
Copyright: 2009
Pages: 7
Source title:
Encyclopedia of Information Science and Technology, Second Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-60566-026-4.ch551
Purchase
|
Abstract
The job shop scheduling problem (JSSP) is generally defined as decision-making problems with the aim of optimizing one or more scheduling criteria. Many different approaches, such as simulated annealing (Wu et al., 2005), tabu search (Pezzella & Merelli, 2000), genetic algorithm (Watanabe, Ida, & Gen, 2005), ant colony optimization (Huang & Liao, 2007), neural networks (Wang, Qiao, &Wang, 2001), evolutionary algorithm (Tanev, Uozumi, & Morotome, 2004) and other heuristic approach (Chen & Luh, 2003; Huang & Yin, 2004; Jansen, Mastrolilli, & Solis-Oba, 2005; Tarantilis & Kiranoudis, 2002), have been successfully applied to JSSP. Flexible job shop scheduling problem (FJSSP) is an extension of the classical JSSP which allows an operation to be processed by any machine from a given set. It is more complex than JSSP because of the addition need to determine the assignment of operations to machines. Bruker and Schlie (1990) were among the first to address this problem.
Related Content
Christine Kosmopoulos.
© 2022.
22 pages.
|
Melkamu Beyene, Solomon Mekonnen Tekle, Daniel Gelaw Alemneh.
© 2022.
21 pages.
|
Rajkumari Sofia Devi, Ch. Ibohal Singh.
© 2022.
21 pages.
|
Ida Fajar Priyanto.
© 2022.
16 pages.
|
Murtala Ismail Adakawa.
© 2022.
27 pages.
|
Shimelis Getu Assefa.
© 2022.
17 pages.
|
Angela Y. Ford, Daniel Gelaw Alemneh.
© 2022.
22 pages.
|
|
|