IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Ultra High Frequency Polynomial and Trigonometric Higher Order Neural Networks for Control Signal Generator

Ultra High Frequency Polynomial and Trigonometric Higher Order Neural Networks for Control Signal Generator
View Sample PDF
Author(s): Ming Zhang (Christopher Newport University, USA)
Copyright: 2017
Pages: 34
Source title: Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-0788-8.ch026

Purchase

View Ultra High Frequency Polynomial and Trigonometric Higher Order Neural Networks for Control Signal Generator on the publisher's website for pricing and purchasing information.

Abstract

This chapter develops a new nonlinear model, Ultra high frequency Polynomial and Trigonometric Higher Order Neural Networks (UPT-HONN), for control signal generator. UPT-HONN includes UPS-HONN (Ultra high frequency Polynomial and Sine function Higher Order Neural Networks) and UPC-HONN (Ultra high frequency Polynomial and Cosine function Higher Order Neural Networks). UPS-HONN and UPC-HONN model learning algorithms are developed in this chapter. UPS-HONN and UPC-HONN models are used to build nonlinear control signal generator. Test results show that UPS-HONN and UPC-HONN models are better than other Polynomial Higher Order Neural Network (PHONN) and Trigonometric Higher Order Neural Network (THONN) models, since UPS-HONN and UPC-HONN models can generate control signals with error approaching 0.0000%.

Related Content

Mohamed Arezki Mellal. © 2022. 9 pages.
Tahir Cetin Akinci, Ramazan Caglar, Gokhan Erdemir, Aydin Tarik Zengin, Serhat Seker. © 2022. 11 pages.
Sunanda Hazra, Provas Kumar Roy. © 2022. 16 pages.
Ragab A. El-Sehiemy, Almoataz Y. Abdelaziz. © 2022. 23 pages.
Khaled Dassa, Abdelmadjid Recioui. © 2022. 35 pages.
Anupama Kumari, Mukund Madhaw, C. B. Majumder, Amit Arora. © 2022. 21 pages.
Mandrita Mondal. © 2022. 20 pages.
Body Bottom