IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Ultra High Frequency Trigonometric Higher Order Neural Networks for Time Series Data Analysis

Ultra High Frequency Trigonometric Higher Order Neural Networks for Time Series Data Analysis
View Sample PDF
Author(s): Ming Zhang (Christopher Newport University, USA)
Copyright: 2009
Pages: 31
Source title: Artificial Higher Order Neural Networks for Economics and Business
Source Author(s)/Editor(s): Ming Zhang (Christopher Newport University, USA)
DOI: 10.4018/978-1-59904-897-0.ch007

Purchase

View Ultra High Frequency Trigonometric Higher Order Neural Networks for Time Series Data Analysis on the publisher's website for pricing and purchasing information.

Abstract

This chapter develops a new nonlinear model, Ultra high frequency Trigonometric Higher Order Neural Networks (UTHONN), for time series data analysis. Results show that UTHONN models are 3 to 12% better than Equilibrium Real Exchange Rates (ERER) model, and 4 – 9% better than other Polynomial Higher Order Neural Network (PHONN) and Trigonometric Higher Order Neural Network (THONN) models. This study also uses UTHONN models to simulate foreign exchange rates and consumer price index with error approaching 0.0000%.

Related Content

Arunaben Prahladbhai Gurjar, Shitalben Bhagubhai Patel. © 2022. 30 pages.
Meghna Babubhai Patel, Jagruti N. Patel, Upasana M. Bhilota. © 2022. 10 pages.
Vo Ngoc Phu, Vo Thi Ngoc Tran. © 2022. 27 pages.
Steven Walczak. © 2022. 17 pages.
Priyanka P. Patel, Amit R. Thakkar. © 2022. 26 pages.
Vo Ngoc Phu, Vo Thi Ngoc Tran. © 2022. 34 pages.
Sarat Chandra Nayak, Subhranginee Das, Bijan Bihari Misra. © 2022. 20 pages.
Body Bottom