IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Walking Control of Humanoid Robots on Uneven Ground Using Fuzzy Algorithm

Walking Control of Humanoid Robots on Uneven Ground Using Fuzzy Algorithm
View Sample PDF
Author(s): Saeed Abdolshah (University of Padova, Italy), Mohammad Abdolshah (Islamic Azad University – Semnan, Iran), Majid Abdolshah (University of Tehran, Iran)and S. Vahid Hashemi (Semnan University, Iran)
Copyright: 2019
Pages: 10
Source title: Rapid Automation: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-8060-7.ch016

Purchase

View Walking Control of Humanoid Robots on Uneven Ground Using Fuzzy Algorithm on the publisher's website for pricing and purchasing information.

Abstract

Walking control of humanoid robots is a challenging issue. In this chapter, a method for modeling humanoid robots is presented considering the human being indices such as DOFs, mass and the moment of inertia of the segments. In the next step, a walking pattern on the flat ground is generated and the robot motion is simulated in the MSC. Visual Nastran 4D™ software. ZMP trajectory of the simulated humanoid robot in walking cycle has been obtained. An uneven ground is generated in the software, where the robot falls down during the motion. A fuzzy algorithm is employed to balance the robot; input is defined as the differences between the projections of ZMP in flat and uneven ground and output is a compensative signal to make the robot follow the flat ground ZMP pattern to refuse the robot falling. Output signal is distributed in different joints to make faster and more effective compensation. Although the type of uneven ground can be important, but the robot could successfully pass the designed uneven ground in MSC.Visual Nastran 4D.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom