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Logistic vs. W-Lambert 
Information in Modeling 

Enzyme Kinetics at 
Quantum Level

ABSTRACT

The logistic temporal solution of the generalized Michaelis-Menten kinetics is employed to provide a 
quantum basis for the tunneling time and energy evaluations of Brownian enzymic reactions. The mono-
substrate and mixed inhibition cases are treated and the associated quantum diagrams of the reaction 
mechanisms are depicted in terms of intermediate enzyme complexes. The methodology is suited for 
practically controlling of the enzymic activity throughout absorption spectroscopy.

INTRODUCTION

Although in the first century from their discover 
the enzymes were mainly studied for elucidation 
of their kinetics (Schnell & Maini, 2003), em-
phasising on how their structure is changed with 
the chemical modifications of functional groups 
(Hirs, 1967), or for experiencing the “forced 
evolution” (Rigby, Burleigh, & Hartley, 1974), 
in current years the focus was on controlling 

them towards biotechnological roles through the 
knowledge based methods such as the site-directed 
mutagenesis (Graham et al., 1994; Tyagi et al., 
2005) or gene-shuffling techniques (Stemmer, 
1994). However, aiming to create a better enzyme, 
with improved specificity near the “catalytic 
perfection” (Albery & Knowles, 1976), raises the 
intrinsic difficulty to rationalize a general model 
for its activity since the relatively poor level of 
comprehension about the enzyme machinery 
(Nixon, Ostermeier, & Benkovic, 1998). As such, 
deviations from classical behaviour were reported 
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for enzymes yeast alcohol dehydrogenase (Cha, 
Murray, & Klinman, 1989), bovine serum amine 
oxidase (Grant & Klinman, 1989), monoamine 
oxidase (Jonsson, Edmondson, & Klinman, 1994), 
glucose oxidation (Kohen, Jonsson, & Klinman, 
1997), or for enzyme lipoxygenase (Jonsson et al., 
1996), in which it was shown that H-transfer is 
catalysed by quantum tunneling process. These, 
and other experimental (Bahnson & Klinman, 
1995) and computational (Bala et al., 1996; Hwang 
& Warshel, 1996; Alper et al., 2001; Astumian 
et al., 1989; Ross et al., 2003) indications of 
conformational fluctuations during protein dy-
namics, suggested the attractive hypothesis that 
quantum tunneling and the enzyme catalysis are 
inter-correlated (Ringe & Petsko, 1999; Sutcliffe 
& Scrutton, 2000).

The solvent dynamics, i.e. the in vitro and in 
vivo conditions, and “natural breathing,” i.e. the 
quantum fluctuations in the active site, of the 
enzyme molecule need to be counted in a more 
complete picture of enzymic catalysis. However, 
the quantum (fluctuating) nature of the enzymic 
reactions can be visualised by combining the 
relationship between the catalytic rate (kcat) and 
temperature (T) (DeVault & Chance, 1966) with 
that between the reaction rate and the turnover 
number or the effective time of reaction (Δt) via 
Heisenberg relation
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were �  and kB stand for the reduced Planck and 
Boltzmann constants, respectively. Of course, in 
relation (1) the equivalence between quantum 
statistics and quantum mechanics was physically 
assumed when equating the thermal and quantum 
(tunneling) energies, kBT and ∆E, respectively 
(Kleinert, Pelster, & Putz, 2002). Nevertheless, 
relation (1) is the basis of rethinking upon the 
static character of the energetic barrier, recalling 
the so called steady state approximation, usually 

assumed in describing enzymic catalysis (Laidler, 
1955), within the transition state theory (TST) 
(Glasstone, Laidler, & Eyring, 1941).

Basically, when applied to enzymic reactions 
the recent developments suggest that the “text-
book” TST is, at least in some situations, neces-
sarily flawed. This because TST primarily treat 
the enzymes as being only particle-like entities, 
completely ignoring their electronic and protonic 
constitution when mediate chemical information-
transfer when act on substrate. On contrary, as 
electrical insulators the proteins can transfer their 
electrons only by means of wave-like properties 
or tunneling processes. However, while electron 
transfer occurs at large distances, up to ca. 25Å, 
the same tunneling probability may be achieved 
by the protium (C – H group) at the distance of 
0.58Å, the specific range for enzyme-substrate 
binding site. Such picture is sustained also by 
the electrostatic complementary of the catalytic 
site hypothesis, first suggested by Pauling (Paul-
ing, 1946), and then refined by Marcus theory of 
electron transfer in chemical reactions (Marcus, 
1993), stating that the dynamic fluctuations of 
the environment develop the driving force for that 
chemical reactions proceed.

Actually, the wave-particle duality of matter 
allows designing new pathway from reactants 
(enzyme E and substrate S) to products (enzyme 
and product P) in a Brownian enzymic reaction 
(Brown, 1902)

E S ES EP E Pdelay+ ↔  → → + 	 (2)

by means of passing through the barrier between 
the ground states of enzyme-substrate (ES) and 
enzyme-product (EP) complexes, employing the 
wave-like manifestation, instead of passing over 
it, as the TST predict for the particle-like mani-
festation of enzymes, see Figure 1. In this context, 
the thermal activation is realized on the basis of 
vibrational enhancement, at its turn sustained 
by quantum fluctuations of the enzyme-binding 
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