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Chapter  73

Hybrid Solar Cells:
Materials and Technology

ABSTRACT

Conventional solar cells are usually manufactured from silicon, an inorganic material. This type of 
solar cell has a high efficiency, up to 40%, but these cells are using very expensive materials of a high 
purity and energy intensive processing techniques. This chapter is dedicated to a critical presentation of 
hybrid solar cells. They are a combination of both organic and inorganic nanostructure materials and, 
therefore, combine the properties and advantages of their components. Unfortunately, so far, the hybrid 
solar cells have a low conversion efficiency of the sunlight, 6-7% (Kim, et al., 2007).

INTRODUCTION

Hybrid photovoltaic cells, classified as the third 
and fourth generation solar cells, are a mix of 
nanostructures of both organic (p-type conjugated 
polymers, photosensitive dyes, carbon nanotubes, 
etc.) and inorganic (nanostructures or nanopar-
ticles of TiO2, ZnO, PbS, PbSe, CdTe, CuInS2, 
CuInSe2, etc.) materials.

One of the materials (organic component) 
acts as the photon absorber. In contrast to inor-
ganic semiconductors, photo excitation of organic 

semiconductors results in a strongly bounded 
electron-hole pair, called an exciton (Ginger & 
Greenham, 1999b). These electron-hole pairs are 
only effectively separated at an interface between 
a p-type (electron-donating) material and n-type 
(electron-accepting) material represented by 
the inorganic component of a hybrid solar cell, 
Figure 1.

In order to have a favourable charge transfer 
at the interface, the following condition must be 
satisfied (Ginger & Greenham, 1999b): EA

A-
EA

D>UD, where EA is the electron affinity, U is 
the columbic binding energy of the exciton on the 
donor and superscript A refers to the acceptor and 
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superscript D refers to the donor. For the exciton 
binding energy in commonly used organic mate-
rials (polymers, oligomers, small molecules, 
carbon nanotubes) the value ranges from 0.3 eV 
to 1.4 eV, which is considerably higher than the 
binding exciton energy for inorganic semiconduc-
tor materials, 0.02-0.04 eV (Scheblykin, Yartsev, 
Pullerits, Gulbinas, & Sundström, 2007). In order 
to dissociate the exciton in a bulk organic medium, 
the thermal energy at room temperature (≈0.025 
eV) is not sufficient, therefore the exciton dis-
sociation is possible only at the interface between 
the donor and the acceptor materials with favor-
able HOMO and LUMO energy levels.

The difference between the LUMOs (or 
conductive band) of the donor and acceptor will 
compensate the energy required for the dissocia-
tion and the transfer of the electron (Saunders & 
Turner, 2008). After charge separation, the car-
riers (electrons and holes) are transported to the 
electrodes through a percolation network.

The exciton generated in polymer has a time 
scale from one picosecond to one nanosecond 
(Shaw, Ruseckas, & Samuel, 2008) and the dif-
fusion length (at average distance an exciton can 
diffuse through material before its annihilation 
by recombination) is short in polymers (5-10 nm) 
(Ginger & Greenham, 1999b). Only the exciton 
generated within this length close to an acceptor 
would contribute to the photocurrent of the cells. 

For this reason, the hybrid solar cells often use a 
nanostructured interpenetrating network of donor 
and acceptor materials (bulk heterojunction) with 
an enhanced interfacial area where the excitons 
are separated into charge carriers (Saunders & 
Turner, 2008). The bulk heterojunction concept 
allows for more interfacial contact between the 
organic (donor) and inorganic (acceptor) materials 
than the phase separated bi-layer heterojunction.

Hybrid solar cells have some advantages over 
the other types of photovoltaics (first and second-
generation cells) (Gledhill, Scott, & Gregg, 2005; 
Huynh, Dittmer, & Alivisatos, 2002; McGehee, 
2009; Ong & Levitsky, 2010):

•	 Hybrid nanocomposite mixtures combine 
the advantages of both type of materials: 
the solution processing of organic semi-
conductors with the high charge-carriers 
mobility and light absorption at longer 
wavelengths if inorganic semiconductors;

•	 The existence of an organic component al-
lows hybrid solar cells to be superior over 
conventional semiconducting photovoltaics 
in terms of cost efficiency, scalable wet pro-
cessing, and the variety of organic materi-
als, lightweight, and flexibility. Moreover, 
the recent progress in advanced semicon-
ducting nanostructures in combination with 
polymers and/or organic nanomaterials, 
such as fullerenes and carbon nanotubes, 
opens new opportunities to overcome the 
8-10% barrier of light conversion efficiency 
for hybrid solar cells in the near future (Li, 
et al., 2009; Ong, Euler, & Levitsky, 2010).

CLASSIFICATION OF 
HYBRID SOLAR CELLS

The hybrid solar cells classification depends on the 
nature and morphology of organic and inorganic 
components and it is presented in the Figure 2 
(Ong & Levitsky, 2010).

Figure 1. Energy (E) diagram at the interface 
donor/acceptor in a hybrid solar cell
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