
28

����������*�����(�%�
�
���
������
	
����
����
���������

Leonardo Tininini
CNR - Istituto di Analisi dei Sistemi e Informatica “Antonio Ruberti,” Italy

Copyright © 2006, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

An efficient query engine is certainly one of the most
important components in data warehouses (also known as
OLAP systems or multidimensional databases) and its
efficiency is influenced by many other aspects, both
logical (data model, policy of view materialization, etc.)
and physical (multidimensional or relational storage, in-
dexes, etc). As is evident, OLAP queries are often based
on the usual metaphor of the data cube and the concepts
of facts, measures and dimensions and, in contrast to
conventional transactional environments, they require
the classification and aggregation of enormous quantities
of data. In spite of that, one of the fundamental require-
ments for these systems is the ability to perform multidi-
mensional analyses in online response times. Since the
evaluation from scratch of a typical OLAP aggregate
query may require several hours of computation, this can
only be achieved by pre-computing several queries, stor-
ing the answers permanently in the database and then
reusing them in the query evaluation process. These pre-
computed queries are commonly referred to as material-
ized views and the problem of evaluating a query by using
(possibly only) these precomputed results is known as
the problem of answering/rewriting queries using views.
In this paper we briefly analyze the difference between
query answering and query rewriting approach and why
query rewriting is preferable in a data warehouse context.
We also discuss the main techniques proposed in litera-
ture to rewrite aggregate multidimensional queries using
materialized views.

BACKGROUND

Multidimensional data are obtained by applying aggrega-
tions and statistical functions to elementary data, or more
precisely to data groups, each containing a subset of the
data and homogeneous with respect to a given set of
attributes. For example, the data “Average duration of
calls in 2003 by region and call plan” is obtained from the
so-called fact table, which is usually the product of
complex source integration activities (Lenzerini, 2002) on
the raw data corresponding to each phone call in that year.

Several groups are defined; each consisting of calls made
in the same region and with the same call plan, and finally
applying the average aggregation function on the dura-
tion attribute of the data in each group. The pair of values
(region, call plan) is used to identify each group and is
associated with the corresponding average duration value.
In multidimensional databases, the attributes used to
group data define the dimensions, whereas the aggregate
values define the measures.

The term multidimensional data comes from the well-
known metaphor of the data cube (Gray, Bosworth, Lay-
man, & Pirahesh, 1996). For each of n attributes, used to
identify a single measure, a dimension of an n-dimensional
space is considered. The possible values of the identify-
ing attributes are mapped to points on the dimension’s
axis, and each point of this n-dimensional space is thus
mapped to a single combination of the identifying at-
tribute values and hence to a single aggregate value. The
collection of all these points, along with all possible
projections in lower dimensional spaces, constitutes the
so-called data cube. In most cases, dimensions are struc-
tured in hierarchies, representing several granularity lev-
els of the corresponding measures (Jagadish, Lakshmanan,
& Srivastava, 1999). Hence a time dimension can be
organized into days, months and years; a territorial dimen-
sion into towns, regions and countries; a product dimen-
sion into brands, families and types. When querying
multidimensional data, the user specifies the measures of
interest and the level of detail required by indicating the
desired hierarchy level for each dimension. In a multidi-
mensional environment querying is often an exploratory
process, where the user “moves” along the dimension
hierarchies by increasing or reducing the granularity of
displayed data. The drill-down operation corresponds to
an increase in detail, for example, by requesting the
number of calls by region and month, starting from data
on the number of calls by region or by region and year.
Conversely, roll-up allows the user to view data at a
coarser level of granularity (Agrawal, Gupta, & Sarawagi,
1997; Cabibbo & Torlone, 1997).

Multidimensional querying systems are commonly
known as OLAP (Online Analytical Processing) Systems,
in contrast to conventional OLTP (Online Transactional
Processing) Systems. The two types have several con-

 29

Aggregate Query Rewriting in Multidimensional Databases

�
trasting features, although they share the same require-
ment of fast “online” response times. In particular, one of
the key differences between OLTP and OLAP queries is
the number of records required to calculate the answer.
OLTP queries typically involve a rather limited number of
records, accessed through primary key or other specific
indexes, which need to be processed for short, isolated
transactions or to be issued on a user interface. In con-
trast, multidimensional queries usually require the classi-
fication and aggregation of a huge amount of data (Gupta,
Harinarayan, & Quass, 1995) and fast response times are
made possible by the extensive use of pre-computed
queries, called materialized views (whose answers are
stored permanently in the database), and by sophisti-
cated techniques enabling the query engine to exploit
these pre-computed results.

MAIN THRUST

The problem of evaluating the answer to a query by using
pre-computed (materialized) views has been extensively
studied in literature and generically denoted as answering
queries using views (Levy, Mendelzon, Sagiv, &
Srivastava, 1995; Halevy, 2001). The problem can be
informally stated as follows: given a query Q and a
collection of views V over the same schema s, is it possible
to evaluate the answer to Q by using (only) the informa-
tion provided by V? A more rigorous distinction has also
been made between view-based query rewriting and query
answering, corresponding to two distinct approaches to
the general problem (Calvanese, De Giacomo, Lenzerini, &
Vardi, 2000; Halevy, 2001). This is strictly related to the
distinction between view definition and view extension,
which is analogous to the standard distinction between
schema and instance in database literature. Broadly speak-
ing, view definition corresponds to the way the query is
syntactically defined, for example to the corresponding
SQL expression, while its extension corresponds to the
set of returned tuples, that is, the result obtained by
evaluating the view on a specific database instance.

Query Answering vs. Query Rewriting

Query rewriting is based on the use of view definitions to
produce a new rewritten query, expressed in terms of
available view names and equivalent to the original. The
answer can then be obtained by using the rewritten query
and the view extensions (instances). Query answering, in
contrast, is based on the exploitation of both view defini-
tions and extensions and attempts to determine the best
possible answer, possibly a subset of the exact answer,
which can be extracted from the view extensions
(Abiteboul & Duschka, 1998; Grahne & Mendelzon, 1999).

In general, query answering techniques are preferable
in contexts where exact answers are unlikely to be ob-
tained (e.g., integration of heterogeneous data sources,
like Web sites), and response time requirements are not
very stringent. However, as noted in Grahne & Mendelzon
(1999), query answering methods can be extremely ineffi-
cient, as it is difficult or even impossible to process only
the “useful” views and apply optimization techniques
such as pushing selections and joins. As a consequence,
the rewriting approach is more appropriate in contexts
such as OLAP systems, where there is a very large amount
of data and fast response times are required (Goldstein &
Larson, 2001), and for query optimization, where different
query plans need to be maintained in the main memory and
efficiently compared (Afrati, Li, & Ullman, 2001).

Rewriting and Answering: An Example

Consider a fact table Cens, of elementary census data on
the simplified schema: (Census_tract_ID, Sex,
Empl_status, Educ_status, Marital_status) and a collec-
tion of aggregate data representing the resident popula-
tion by sex and marital status, stored in a materialized view
on the schema V: (Sex, Marital_status, Pop_res). For
simplicity, it is assumed that the dimensional tables are
“collapsed” in the fact table Cens. A typical multidimen-
sional query will be shown in the next section. The view
V is computed by a simple count(*)-group-by query on
the table Cens.

CREATE VIEW V AS
SELECT Sex, Marital_status, COUNT(*) AS Pop_res
FROM Cens
GROUP BY Sex, Marital_status

The query Q expressed by

SELECT Marital_status, COUNT(*)
FROM Cens
GROUP BY Marital_status

corresponding to the resident population by marital sta-
tus can be computed without accessing the data in Cens,
and be rewritten as follows:

SELECT Marital_status, SUM(Pop_res)
FROM V
GROUP BY Marital_status

Note that the rewritten query can be obtained very
efficiently by simple syntactic manipulations on Q and V
and its applicability does not depend on the records in V.
Suppose now some subsets of (views on) Cens are avail-
able, corresponding to the employment statuses stu-

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/aggregate-query-rewriting-multidimensional-databases/10560

Related Content

An Algebraic Approach to Data Quality Metrics for Entity Resolution over Large Datasets
John Talburt, Richard Wang, Kimberly Hessand Emily Kuo (2008). Data Warehousing and Mining: Concepts,

Methodologies, Tools, and Applications (pp. 3067-3084).

www.irma-international.org/chapter/algebraic-approach-data-quality-metrics/7822

Constructionist Perspective of Organizational Data Mining
Isabel Ramosand João Álvaro Carvalho (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools, and

Applications (pp. 2296-2301).

www.irma-international.org/chapter/constructionist-perspective-organizational-data-mining/7763

Agent-Based Mining of User Profiles for E-Services
Pasquale De Meo, Giovanni Quattrone, Giorgio Terracinaand Domenico Ursino (2005). Encyclopedia of Data

Warehousing and Mining (pp. 23-27).

www.irma-international.org/chapter/agent-based-mining-user-profiles/10559

World Wide Web Usage Mining
Wen-Chen Hu, Hung-Jen Yang, Chung-wei Leeand Jyh-haw Yeh (2005). Encyclopedia of Data Warehousing and

Mining (pp. 1242-1248).

www.irma-international.org/chapter/world-wide-web-usage-mining/10788

Using Active Rules to Maintain Data Consistency in Data Warehouse Systems
Shi-Ming Huang, John Tait, Chun-Hao Suand Chih-Fong Tsai (2009). Progressive Methods in Data Warehousing and

Business Intelligence: Concepts and Competitive Analytics (pp. 252-272).

www.irma-international.org/chapter/using-active-rules-maintain-data/28170

http://www.igi-global.com/chapter/aggregate-query-rewriting-multidimensional-databases/10560
http://www.igi-global.com/chapter/aggregate-query-rewriting-multidimensional-databases/10560
http://www.irma-international.org/chapter/algebraic-approach-data-quality-metrics/7822
http://www.irma-international.org/chapter/constructionist-perspective-organizational-data-mining/7763
http://www.irma-international.org/chapter/agent-based-mining-user-profiles/10559
http://www.irma-international.org/chapter/world-wide-web-usage-mining/10788
http://www.irma-international.org/chapter/using-active-rules-maintain-data/28170

