
202

#���������
�

Marcus A. Maloof
Georgetown University, USA

Copyright © 2006, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Traditional approaches to data mining are based on an
assumption that the process that generated or is gener-
ating a data stream is static. Although this assumption
holds for many applications, it does not hold for many
others. Consider systems that build models for identify-
ing important e-mail. Through interaction with and feed-
back from a user, such a system might determine that
particular e-mail addresses and certain words of the
subject are useful for predicting the importance of e-
mail. However, when the user or the persons sending e-
mail start other projects or take on additional responsi-
bilities, what constitutes important e-mail will change.
That is, the concept of important e-mail will change or
drift. Such a system must be able to adapt its model or
concept description in response to this change. Coping
with or tracking concept drift is important for other
applications, such as market-basket analysis, intrusion
detection, and intelligent user interfaces, to name a few.

BACKGROUND

Concept drift may occur suddenly, what some call revo-
lutionary drift. Or it may occur gradually, what some
call evolutionary drift (Klenner & Hahn, 1994). Drift
may occur at different time scales and at varying rates.
Concepts may change and then reoccur, perhaps with
contextual cues (Widmer, 1997). For example, the con-
cept of warm is different in the summer than in the
winter. A contextual cue or variable is perhaps the
season or the daily mean temperature. It helps identify
the appropriate model to use for determining if, for
example, it is a warm day. Coping with concept drift
requires an online approach, meaning that the system
must mine a stream of data. If drift occurs slowly
enough, distinguishing between real and virtual concept
drift may be difficult (Klinkenberg & Joachims, 2000).
The former occurs when concepts indeed change over
time; the latter occurs when performance drops during
the normal online process of building and refining a
model. Such drops could be due to differences in the
data in different parts of the stream. The richness of this
problem has led to an equally rich collection of ap-
proaches.

Research on the problem of concept drift has been
empirical and theoretical (see Kuh, Petsche, & Rivest,
1991; Mesterharm, 2003); however, the focus of this
article is on empirical approaches. In this regard, re-
searchers have evaluated such approaches by using syn-
thetic data sets (for examples, see Maloof & Michalski,
2004; Schlimmer & Grainger, 1986; Street & Kim,
2001; Widmer & Kubat, 1996) and real data sets (for
examples, see Black & Hickey, 2002; Blum, 1997; Lane
& Brodley, 1998), both small (Maloof & Michalski,
2004; Schlimmer & Grainger, 1986; Widmer & Kubat,
1996) and large (Hulten, Spencer, & Domingos, 2001;
Kolter & Maloof, 2003; Street & Kim, 2001; Wang,
Fan, Yu, & Han, 2003).

Systems for coping with concept drift fall into three
broad categories: incremental, partial memory, and en-
semble. Incremental approaches use new instances to
modify existing models. Partial-memory approaches
maintain a subset of previously encountered instances,
previously built and refined models, or both. When new
instances arrive, such systems use the new instances and
their store of past instances and models to build new
models or refine existing ones. Finally, ensemble meth-
ods build and maintain multiple models to cope with
concept drift. Naturally, systems designed for concept
drift do not always fall neatly into only one of these
categories. For example, some partial-memory ap-
proaches are also incremental (Maloof & Michalski,
2004; Widmer & Kubat, 1996).

A model or concept description is a generalized
representation of instances or training data. Such repre-
sentations are important for prediction and for better
understanding the data set from which they were built.
Researchers have used a variety of representations for
drifting concepts, including the instances themselves,
probabilities, linear equations, decision trees, and deci-
sion rules. Methods for inducing and building such
representations include instance-based learning, naïve
Bayes, support vector machines, C4.5, and AQ15, re-
spectively. See Hand, Mannila, and Smyth (2001) for
additional information.

MAIN THRUST

Researchers have proposed a variety of approaches for
learning concepts that drift. However, evaluating such

 203

Concept Drift

approaches is a critical issue. In the next two sections, I
survey approaches for learning concepts that change
over time and discuss issues of evaluating such ap-
proaches.

Survey of Approaches for Concept Drift

STAGGER (Schlimmer & Grainger, 1986) was the first
system for coping with concept drift. Its model consists
of nodes, corresponding to features and class labels,
linked together with probabilistic arcs, representing the
strength of association between features and class labels.
As STAGGER processes new instances, it increases or
decreases probabilities, and it may add nodes and arcs. To
classify an unknown instance, STAGGER predicts the
most probable class.

Partial-memory approaches maintain a store of par-
tially built models, a portion of the previously encoun-
tered instances, or both. Such approaches vary in how
they use such information for adjusting current models.
The FLORA Systems (Widmer & Kubat, 1996) maintain
a sequence of examples over a dynamically adjusted
window of time. The Window Adjustment Heuristic
(WAH) adjusts the size of this window in response to
performance changes. Generally, if performance is de-
creasing or poor, then the heuristic reduces the window’s
size; if it is increasing or acceptable, then it increases
the size. These systems also maintain a store of rules,
including ones that are overly general, although these
are not used for prediction. As the systems process
instances, they create new rules or refine existing ones.
To classify an instance, the FLORA systems select the
rule that best matches and return its class label.

The AQ-PM Systems maintain a set of examples
over a window of time, but the systems select examples
from the boundaries of rules, so they can retain ex-
amples that do not reoccur in the data stream. AQ-PM
(Maloof & Michalski, 2000) builds new rules when new
examples arrive, whereas AQ11-PM (Maloof &
Michalski, 2004) refines existing rules. These systems
maintain examples over a static window of time, but
AQ11-PM+WAH (Maloof, 2003) incorporates Widmer
and Kubat’s (1996) WAH for dynamically sizing this
window. Because these systems use rules, when classi-
fying an instance, they return as their prediction the
class label of the best matching rule.

The Concept-adapting Very Fast Decision Tree sys-
tem (Hulten et al., 2001), or CVFDT, progressively
grows a decision tree downward from the leaf nodes. It
maintains frequency counts for attribute values by class
and extends the tree when a statistical test indicates that
a change has occurred. CVFDT also maintains at each
node a list of alternate subtrees, which it swaps with the
current subtree when it detects drift. To classify an

unknown instance, the method uses the instance’s values
to traverse the current tree from the root to a leaf node,
returning as the prediction the associated label.

The Concept Drift 3 system (Black & Hickey, 1999),
or CD3, uses batches of instances annotated with a time
stamp of either current or new to build a decision tree.
When drift occurs, time becomes more relevant for
prediction, so the time-stamp attribute will appear higher
in the decision tree. After pruning, CD3 converts the
tree to rules by enumerating all paths containing a new
time stamp and then removing conditions involving the
time stamp. CD3 predicts the class of the best matching
rule.

Ensemble methods maintain a set of models and use
a voting procedure to yield a global prediction. Blum’s
(1997) implementation of Weighted-Majority
(Littlestone & Warmuth, 1994) uses as models histo-
ries of labels associated with pairs of features. If a
model’s features are present in an instance, then it
predicts the most frequent label present in its history.
The method initializes each model with a weight of 1 and
reduces a model’s weight if it predicts incorrectly. It
predicts based on a weighted vote of the predictions of
the models.

The Streaming Ensemble Algorithm (Street & Kim,
2001) maintains a fixed-size collection of models, each
built from a fixed number of instances. When a new
batch of instances arrives, SEA builds a new model. If
space exists in the collection, then it adds the new
model. Otherwise, it replaces the worst performing
model with the new model, if one exists. SEA predicts
the majority vote of the predictions of the models in the
collection.

The Accuracy-Weighted Ensemble (Wang et al.,
2003) also maintains a fixed-size collection of models,
each built from a batch of instances. However, this
method weights each classifier in the collection based
on its performance on the most recent batch. When
adding a new weighted model, if there is no space in the
collection, then the method stores only the top weighted
models. The method predicts based on a weighted-
majority vote of the predictions of the models in the
collection.

Dynamic Weighted Majority (Kolter & Maloof,
2003), or DWM, maintains a collection of weighted
models but dynamically adds and removes models with
changes in performance. Instead of building a single
model with each batch, DWM uses new instances to
refine all the models in the collection. Each time a
model predicts incorrectly, DWM reduces its weight,
and DWM removes a model from the collection if its
weight falls below a threshold. Like the previous method,
DWM predicts based on a weighted-majority vote of the
predictions of the models, but if the global prediction

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/concept-drift/10593

Related Content

A Java Technology Based Distributed Software Architecture for Web Usage Mining
Juan M. Hernansaez, Juan A. Botiaand Antonio F.G. Skarmeta (2008). Data Warehousing and Mining: Concepts,

Methodologies, Tools, and Applications (pp. 642-658).

www.irma-international.org/chapter/java-technology-based-distributed-software/7667

Data Mining for Supply Chain Management in Complex Networks
Mahesh S. Raisinghaniand Manoj K. Singh (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools,

and Applications (pp. 2468-2475).

www.irma-international.org/chapter/data-mining-supply-chain-management/7776

Ethical Dilemmas in Data Mining and Warehousing
Joseph A. Cazierand Ryan C. LaBrie (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools, and

Applications (pp. 2841-2849).

www.irma-international.org/chapter/ethical-dilemmas-data-mining-warehousing/7805

Evolutionary Computation and Genetic Algorithms
William H. Hsu (2005). Encyclopedia of Data Warehousing and Mining (pp. 477-481).

www.irma-international.org/chapter/evolutionary-computation-genetic-algorithms/10644

Big Data for Prediction: Patent Analysis – Patenting Big Data for Prediction Analysis
Mirjana Pejic-Bach, Jasmina Pivarand Živko Krsti (2019). Big Data Governance and Perspectives in Knowledge

Management (pp. 218-240).

www.irma-international.org/chapter/big-data-for-prediction/216810

http://www.igi-global.com/chapter/concept-drift/10593
http://www.igi-global.com/chapter/concept-drift/10593
http://www.irma-international.org/chapter/java-technology-based-distributed-software/7667
http://www.irma-international.org/chapter/data-mining-supply-chain-management/7776
http://www.irma-international.org/chapter/ethical-dilemmas-data-mining-warehousing/7805
http://www.irma-international.org/chapter/evolutionary-computation-genetic-algorithms/10644
http://www.irma-international.org/chapter/big-data-for-prediction/216810

