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INTRODUCTION

Discretization is a process that transforms quantitative
data into qualitative data. Quantitative data are commonly
involved in data mining applications. However, many
learning algorithms are designed primarily to handle quali-
tative data. Even for algorithms that can directly deal with
quantitative data, learning is often less efficient and less
effective. Hence research on discretization has long been
active in data mining.

BACKGROUND

Many data mining systems work best with qualitative
data, where the data values are discrete descriptive terms
such as young and old. However, lots of data are quan-
titative, for example, with age being represented by a
numeric value rather a small number of descriptors. One
way to apply existing qualitative systems to such quan-
titative data is to transform the data.

Discretization is a process that transforms data con-
taining a quantitative attribute so that the attribute in
question is replaced by a qualitative attribute. A many to
one mapping function is created so that each value of the
original quantitative attribute is mapped onto a value of
the new qualitative attribute. First, discretization divides
the value range of the quantitative attribute into a finite
number of intervals. The mapping function associates all
of the quantitative values in a single interval to a single
qualitative value. A cut point is a value of the quantitative
attribute where a mapping function locates an interval
boundary. For example, a quantitative attribute recording
age might be mapped onto a new qualitative age attribute
with three values, pre-teen, teenage, and post-teen. The
cut points for such a discretization may be 13 and 18.
Values of the original quantitative age attribute that are
below 13 might get mapped onto the pre-teen value of the
new attribute, values from 13 to 18 onto teen, and values
above 18 onto post-teen.

Various discretization methods have been proposed.
Diverse taxonomies exist in literature to categorize
discretization methods. These taxonomies are comple-

mentary, each relating to a different dimension along
which discretization methods may differ. Typically,
discretization methods can be either primary or compos-
ite. Primary methods accomplish discretization without
reference to any other discretization method. Composite
methods are built on top of some primary method(s).

Primary methods can be classified as per the following
taxonomies.

• Supervised vs. Unsupervised (Dougherty, Kohavi,
& Sahami, 1995): Supervised methods are only
applicable when mining data that are divided into
classes. These methods refer to the class informa-
tion when selecting discretization cut points. Unsu-
pervised methods do not use the class information.
For example, when trying to predict whether a cus-
tomer will be profitable, the data might be divided
into two classes profitable and unprofitable.  A
supervised discretization technique would take
account of how useful was the selected cut point for
identifying whether a customer was profitable. An
unsupervised technique would not. Supervised
methods can be further characterized as error-based,
entropy-based or statistics-based. Error-based
methods apply a learner to the transformed data and
select the intervals that minimize error on the train-
ing data. In contrast, entropy-based and statistics-
based methods assess respectively the class en-
tropy or some other statistic regarding the relation-
ship between the intervals and the class.

• Parametric vs. Non-Parametric: Parametric
discretization requires the user to specify param-
eters for each discretization performed. An example
of such a parameter is the maximum number of
intervals to be formed. Non-parametric discretization
does not utilize user-specified parameters.

• Hierarchical vs. Non-Hierarchical:  Hierar-
chical discretization utilizes an incremental pro-
cess to select cut points. This creates an implicit
hierarchy over the value range. Hierarchical
discretization can be further characterized as ei-
ther split  or merge  (Kerber,  1992).  Split
discretization starts with a single interval that



  393

Discretization for Data Mining

�
encompasses the entire value range, then repeat-
edly splits it into sub-intervals until some stop-
ping criterion is satisfied. Merge discretization
starts with each value in a separate interval, then
repeatedly merges adjacent intervals until a stop-
ping criterion is met. It is possible to combine
both split and merge techniques. For example,
initial intervals may be formed by splitting.  A
merge process is then applied to post-process
these init ial  intervals.  Non-hierarchical
discretization creates intervals without forming a
hierarchy. For example, many methods forming
the intervals sequentially in a single scan through
the data.

• Univariate vs. Multivariate (Bay, 2000):  Univariate
methods discretize an attribute without reference to
attributes other than the class. In contrast, multi-
variate methods consider relationships among at-
tributes during discretization.

• Disjoint vs. Non-Disjoint (Yang & Webb, 2002):
Disjoint methods discretize the value range of an
attribute into intervals that do not overlap. Non-
disjoint methods allow overlap between intervals.

• Global vs. Local (Dougherty, Kohavi, & Sahami,
1995): Global methods create a single mapping
function that is applied throughout a given classi-
fication task. Local methods allow different map-
ping functions for a single attribute in different
classification contexts. For example, decision tree
learning may discretize a single attribute into differ-
ent intervals at different nodes of a tree (Quinlan,
1993). Global techniques are more efficient, because
one discretization is used throughout the entire
data mining process, but local techniques may re-
sult in the discovery of more useful cut points.

• Eager vs. Lazy (Hsu, Huang, & Wong, 2000, 2003):
Eager methods generate the mapping function prior
to classification time. Lazy methods generate the
mapping function as it is needed during classifica-
tion time.

• Ordinal vs. Nominal: Ordinal discretization forms a
mapping function from quantitative to ordinal quali-
tative data. It seeks to retain ordering information
implicit in quantitative attributes. In contrast, nomi-
nal discretization forms a mapping function from
quantitative to nominal qualitative data, thereby
discarding any ordering information. For example, if
the value range 0 – 29 were discretized into three
intervals 0 – 9, 10 – 19 and 20 – 29, if the intervals are
treated as nominal then a value in the interval 0 – 9
will be treated as dissimilar to one in 20 – 29 as it is
to one in 10 – 19. In contrast, while ordinal
discretization will treat the difference between 9 and
either 10 or 19 as equivalent, it retains the informa-

tion that this difference is less than the difference
between 9 and 29.

• Fuzzy vs. Non-fuzzy (Ishibuchi, Yamamoto, &
Nakashima, 2001; Wu, 1999):  Fuzzy discretization
creates a fuzzy mapping function. A value may
belong to multiple intervals, each with varying de-
grees of strength. Non-fuzzy discretization forms
exact cut points.

Composite methods first generate a mapping function
using an initial primary method. They then use other
primary methods to adjust the initial cut points.

MAIN THRUST

The main thrust of this chapter deals with how to select
a discretization method. This issue is particularly impor-
tant since there exist a large number of discretization
methods and no one can be universally optimal. When
selecting between discretization methods it is critical to
take account of the learning context, in particular, of the
learning algorithm, the nature of the data, and the learning
objectives. Different learning contexts have different char-
acteristics and hence have different requirements for
discretization. It is unrealistic to pursue a universally
optimal discretization approach that can be blind to its
learning context.

Many discretization techniques have been developed
primarily in the context of a specific type of learning
algorithm, such as decision tree learning, decision rule
learning, naive-Bayes learning, Bayes network learning,
clustering, and association learning. Different types of
learning have different characteristics and hence require
different strategies of discretization.

For example, decision tree learners can suffer from the
fragmentation problem. If an attribute has many values, a
split on this attribute will result in many branches, each of
which receives relatively few training instances, making
it difficult to select appropriate subsequent tests. Hence
they may benefit more than other learners from
discretization that results in few intervals. Decision rule
learners may require pure intervals (containing instances
dominated by a single class), while probabilistic learners
such as naive-Bayes do not. The relations between at-
tributes are key themes for association learning, and
hence multivariate discretization that can capture the
inter-dependencies among attributes is desirable. If
coupled with lazy discretization, lazy learners can further
save training effort. Non-disjoint discretization is not
applicable if the learning algorithm, such as decision tree
learning, requires disjoint attribute values.

In order to facilitate understanding this issue, we
contrast discretization strategies in two popular learning
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