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INTRODUCTION

For many tasks of exploratory data analysis, visualiza-
tion plays an important role.  It is a key for efficient
integration of human expertise — not only to include his
background knowledge, intuition and creativity, but also
his powerful pattern recognition and processing capa-
bilities. The design goals for an optimal user interaction
strongly depend on the given visualization task, but they
certainly include an easy and intuitive navigation with
strong support for the user’s orientation.

Since most of available data display devices are two-
dimensional — paper and screens — the following
problem must be solved: finding a meaningful spatial
mapping of data onto the display area. One limiting
factor is the “restricted neighborhood” around a point in
a Euclidean 2-D surface. Hyperbolic spaces open an
interesting loophole. The extraordinary property of ex-
ponential growth of neighborhood with increasing ra-
dius — around all points — enables us to build novel
displays and browsers. We describe a versatile hyper-
bolic data viewer for building data landscapes in a non-
Euclidean space, which is intuitively browseable with a
very pleasing focus and context technique.

BACKGROUND

The Hyperbolic Space H2

2,300 years ago, the Greek mathematician Euclid
founded his geometry on five axioms. The fifth, the
“parallel axiom,” appeared unnecessary to many of his
colleagues. And they tried hard to prove it derivable —
without success. After almost 2,000 years Lobachevsky
(1793-1856), Bolyai (1802-1860), and Gauss (1777-
1855) negated the axiom and independently discovered
the non-Euclidean geometry. There exist only two ge-
ometries with constant non-zero curvature. Through our
sight of common spherical surfaces (e.g., earth, orange)
we are familiar with the spherical geometry and its
constant positive curvature. Its counterpart with con-
stant negative curvature is known as the hyperbolic
plane H2 (with analogous generalizations to higher di-

mensions). Unfortunately, there is no “good” embedding
of the H2 in R3, which makes it harder to grasp the unusual
properties of the H2. Local patches resemble the situation
at a saddle point, where the neighborhood grows faster
than in flat space. Standard textbooks on Riemannian
geometry (see, e.g., Morgan, 1993) examine the relation-
ship and expose that the area a of a circle of radius r  are
given by

a(r) =  4 π sinh2(r/2)                                                      (1)

This bears two remarkable asymptotic properties: (i)
for small radius r the space “looks flat” since a(r) = π r2.
(ii) For larger r both  grow exponentially with the
radius. As observed in Lamping & Rao (1994, 1999) and
Lamping et al. (1995), this property makes the hyper-
bolic space ideal for embedding hierarchical structures
(since the number of leaves grows exponentially with
the tree depth). This led to the development of the
hyperbolic tree browser  at  Xerox Parc (today
starviewer: see www.inxight.com).

The question how effective is visualization and navi-
gation in the hyperbolic space was studied by Pirolli et
al. (2001). By conducting eye-tracker experiments they
found that the focus+context navigation can signifi-
cantly accelerate the “information foraging.”  Risden et
al. (2000) compared traditional and hyperbolic brows-
ers and found significant improvement in task execution
time for this novel display type.

MAIN THRUST

In order to use the visualization potential of the H2 we
must solve two problems:

• (P1) How can we “accommodate” the data in the
hyperbolic space, and

• (P2) how to project the H2 onto a suitable display?

In the following the answers are described in reverse
sequence, first for the second problem (P2) and then
three principal techniques for P1, which are today avail-
able for different data types.
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Solution for P2:  Poincaré Disk PD

For practical and technological reasons most available
displays are flat. The perfect projection into the flat
display area should preserve length, area, and angles
(=form). But it lays in the nature of a curved space to resist
the attempt to simultaneously achieve these goals. Con-
sequently several projections or maps of the hyperbolic
space were developed, four are especially well examined:
(i) the Minkowski, (ii) the upper-half plane, (iii) the Klein-
Beltrami, and (iv) the Poincaré or disk mapping. For our
purpose the latter is particularly suitable. Its main charac-
teristics are:

• Display Compatibility: The infinite large area
of the H2 is mapped entirely into a circle, the
Poincaré disk PD.

• Circle Rim is Infinity ∞: All remote points are
close to the rim, without touching it.

• Focus+Context: The focus can be moved to each
location in H2, like a “fovea.”  The zooming factor
is 0.5 in the center and falls (exponentially) off
with distance to the fovea. Therefore, the context
appears very natural. As more remote things are,
the less spatial representation is assigned in the
current display (compare Figure 1).

• Lines Become Circles: All H2-lines appear as
circle arc segments of centered straight lines in
PD (both belong to the set of so-called “general-
ized circles”). There extensions cross the PD-rim
always perpendicular on both ends.

• Conformal Mapping: Angles (and therefore
form) relations are preserved in PD, area and
length relations obviously not.

• Regular Tessellations with triangles offer richer
possibilities than the R2. It turns out that there is an
infinite set of choices to tessellate H2: for any
integer n≥≥≥≥≥7, one can construct a regular tessella-
tions in which n triangles meet at each vertex (in
contrast to the plane with allows only  n=3,4,6 and
the sphere only n=3,4,5). Figure 1 depicts an ex-
amples for n=8.

• Moving Around and Changing the Focus:  For
changing the focus point in PD we need a transla-
tion operation, which can be bound to mouse click
and drag events. In the Poincaré disk model the
Möbius transformation T(z) is the appropriate so-
lution. By describing the Poincaré disk PD as the
unit circle in the complex plane, the isometric
transformations for a point z⊂PD can be written as

z’ = T(z; c,θ) = (θ z+c)/(c*θz+1), with  |θ|=1,
|c|<1.  (2)

Here the complex number θ describes a pure rota-
tion of PD around the origin 0 (the star * denotes
complex conjugation). The following translation by c
maps the origin to c and -c becomes the new center 0 (if
θ=1). The Möbius transformations are also called the
“circle automorphies” of the complex plane, since they
describe the transformations from circles to (general-
ized) circles. Here they serve to translate H2 straight
lines to lines — both appearing as generalized circles in
the PD projection. For further details, see for example,
Lamping & Rao (1999) or Walter (2004).

Three Layout Techniques in H2

Now we turn to the question raised earlier: how to accom-
modate data in the hyperbolic space. In the following

Figure 1. Regular H2 tessellation with equilateral triangles (here 8 triangles meet at each vertex). Three
snapshots of a simple focus transfer are visible.  Note the circular appearance of lines in the Poincaré disk PD
and the fish-eye-lens effect: the triangles in the center appear larger and take less space in regions further
away.
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