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Class-Dependent Principal 
Component Analysis

INTRODUCTION

Principal Component Analysis (PCA) (Jolliffe, 
2002) is one of the popular methods for dimen-
sionality reduction that is often used in Predictive 
Analytics tasks. However, it is an unsupervised 
technique as it ignores class membership informa-
tion when projecting data into a lower dimensional 
space from the original space. Therefore when 
PCA precedes data classification, one cannot 
always be certain if classification in the reduced 
space is more accurate than that in the original 
space as dimensionality reduction is unrelated to 
classification.

To address this problem, various authors pro-
posed supervised PCA that utilizes the information 
about labels of instances (Bair, Hastie, Paul, & 
Tibshirani, 2006; Chen, Wang, Smith, & Zhang, 
2008; Das & Nenadic, 2008; Barshan, Ghodsi, 
Azimifar, & Jahromi, 2011; Wu, Bowers, Huynh, 
& Souvenir, 2013; Cai, et al., 2013).

As an example of this type of algorithms, the 
work of Das and Nenadic (2008) is presented 
in detail in this chapter. Das & Nenadic (2008) 
proposed an algorithm, where principal subspace 
is found for each class of data, independently of 
other classes. Test data are then projected into 
each principal subspace and the Bayes rule judges 
which class in which subspace is associated with 
the maximum posterior probability. Thus, dimen-
sionality reduction is combined with classification.

Das and Nenadic argued that partitioning the 
original space onto multiple linear subspaces 
leads to more accurate classification results than 
the conventional wholistic PCA where only one 
linear subspace is used for all classes of data. 
Their motivation was based on the assumption 

that the projection onto a single linear subspace 
will be inadequate if different classes are highly 
overlapped. In this case, class-dependent PCA 
would have better chances to succeed where the 
class-ignorant PCA failed.

BACKGROUND

Principal Component Analysis

Principal component analysis is a procedure for 
analyzing multivariate data which transforms 
the original variables x1,x2,…,xN into new ones 
y1,y2,…,yN that are uncorrelated and account for 
decreasing proportions of the variance in the data 
(Everitt, 2006). PCA can also be defined as the 
orthogonal projection of the data onto a lower 
dimensional space (principal subspace), such that 
the variance of the projected data is maximized 
(Hotelling, 1933).

The new variables, the principal components, 
are defined as linear functions of the original 
variables (Everitt, 2006). Thus, PCA is a linear 
dimensionality reduction technique.

The main assumption behind PCA is that rich 
information in the data space corresponds to direc-
tions of high variance. That is, one needs to search 
for directions of maximum variance in the reduced 
space, which implies that one supposes that: 

1. 	 The data exhibits higher variance in certain 
directions while smaller variance or no vari-
ance at all in other directions, and 

2. 	 The number of directions of high variance is 
much smaller compared to the original data 
dimensionality.
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So, speaking in mathematical terms, it is nec-
essary to maximize the variance of the projected 
data, subject to certain constraints, which renders 
this task as an optimization one. Let us define the 
variance of the projected data and for simplicity 
but without loss of generality let us consider the 
projection onto one-dimensional space as done 
in Bishop (2006, page 562).

Given the data xi, i=1,2,…,N as D-dimension-
al column-vectors1, this linear projection will take 
the form u xT

i1
, where u1 is the D-dimensional 

projection column-vector, “T” stands for trans-
position (uT

1
 is thus a row-vector), and the sub-

script “1” means “first dimension,” so that the 
result of u xT

i1
 is a scalar (real number). For con-

venience (since we are interested in the direction 
of u1 but not in its magnitude), let us impose such 
a constraint on u1: u u

T
1 1

1=  or equivalently, 
u

1 2
1= , where ⋅ 2  is the Euclidean norm of a 

vector. This constraint means that the projection 
vector has unit length and it prevents u

1 2
→∞ . 

It is common to define coordinate systems in terms 
of directions of unit-length vectors sometimes 
called basis vectors. Therefore one can think of 
the desired principle subspace as one of such 
coordinate systems.

The variance of the projected data is then 
given by
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In these formulas, x  and S are the sample 
mean (D×1 vector) and sample covariance D×D 
matrix. Notice that since each vector xi is pro-
jected onto the principal subspace, the mean 
vector also needs to be projected. Moving u1 out 
of the sum was possible because this vector is the 
same for all vectors xi.

As a result, our optimization problem is for-
mulated as

Maximize    Subject to  u Su uT
1 1 1 2

1, .= 	

The standard approach to solve the constrained 
optimization problems is to compose the Lagrang-
ian L by using the Lagrangian multiplier λ1, to 

take the derivative dL
du

1

 and to set it to zero:

L u Su u uT T= + −( )1 1 1 1 1
1λ , 	

dL
du

Su u
1

1 1
2 2 0= − =λ . 	

Hence, the stationary point corresponds to 
Su1=λ1u1, which implies that u1 must be an eigen-
vector of the sample covariance matrix S, since 
the last equation describes the typical eigenprob-
lem2. When left-multiplying the last equation by 
u1 and keeping in mind the constraint �u uT

1 1
1= , 

one obtains that the variance is u SuT
1 1 1

= λ  so 
that it is maximized when u1 is equal to the eigen-
vector of the sample covariance matrix, having 
the largest eigenvalue λ1. This eigenvector is called 
the first principal component. As can be seen, the 
first largest eigenvalue is equal to the sample 
variance of the first principle component.

Other principal components can be incre-
mentally added by searching for a new direction 
that maximizes the projected variance among all 
possible directions orthogonal to those already 
found. Therefore if the principal subspace is m-
dimensional, we need to find the m eigenvectors of 
the data covariance matrix corresponding to the m 
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