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INTRODUCTION

While the technology for mining text documents in
large databases could be said to be relatively mature, the
same cannot be said for mining other important data
types such as speech, music, images and video. Yet these
forms of multimedia data are becoming increasingly
prevalent on the Internet and intranets as bandwidth
rapidly increases due to continuing advances in comput-
ing hardware and consumer demand. An emerging major
problem is the lack of accurate and efficient tools to
query these multimedia data directly, so we are usually
forced to rely on available metadata, such as manual
labeling. Currently the most effective way to label data
to allow for searching of multimedia archives is for
humans to physically review the material. This is already
uneconomic or, in an increasing number of application
areas, quite impossible because these data are being
collected much faster than any group of humans could
meaningfully label them — and the pace is accelerating,
forming a veritable explosion of non-text data. Some
driver applications are emerging from heightened secu-
rity demands in the 21st century, post-production of
digital interactive television, and the recent deployment
of a planetary sensor network overlaid on the Internet
backbone.

BACKGROUND

Although they say a picture is worth a thousand words,
computer scientists know that the ratio of information
contained in images compared to text documents is
often much greater than this. Providing text labels for
image data is problematic because appropriate labeling
is very dependent on the typical queries users will wish
to perform, and the queries are difficult to anticipate at
the time of labeling. For example, a simple image of a
red ball would be best labeled as sports equipment, a toy,
a red object, a round object, or even a sphere, depending
on the nature of the query. Difficulties with text metadata
have led to researchers concentrating on techniques

from the fields of Pattern Recognition and Computer
Vision that work on the image content itself.

A motivating application and development testbed is
the emerging experimental planetary scale sensor Web,
IrisNet (Gibbons, Karp, Ke, Nath, & Sehan, 2003).
IrisNet uses Internet connected desktop PCs and inex-
pensive, off-the-shelf sensors such as Webcams, mi-
crophones, temperature, and motion sensors deployed
globally to provide a wide-area sensor network. IrisNet
is deployed as a service on PlanetLab (www.planet-
lab.org), a worldwide collaborative network environ-
ment for prototyping next generation Internet services
initiated by Intel Research and Princeton University that
has 177 nodes as of August, 2004. Gibbons, Karp, Ke,
Nath, & Sehan envisage a worldwide sensor Web in
which many users can query, as a single unit, vast quan-
tities of data from thousands or even millions of plan-
etary sensors. IrisNet stores its sensor-derived data in a
distributed XML schema, which is well-suited to de-
scribing such hierarchical data as it employs self-de-
scribing tags. Indeed the robust distributed nature of the
database can be most readily compared to the structure
of the Internet DNS naming service.

The authors give an example of IrisNet usage where
an ecologist wishes to assess the environmental damage
after an oil spill by locating beaches where oil has
affected the habitat. The query would be directed toward
a coastal monitoring service that collects images from
video cameras directed at the coastline. The ecologist
would then receive images of the contaminated sites as
well at their geographic coordinates. Yet the same
coastal monitoring service could be used simultaneously
to locate the best beaches for surfing. Moreover, via
stored trigger queries, the sensor network could auto-
matically notify the appropriate lifeguard in the event of
detecting dangerous rips or the presence of sharks.

A valuable prototype application that could be de-
ployed on IrisNet is wide area person recognition and
location services. Such services have existed since the
emergence of human society to locate specific persons
when they are not in immediate view. For example, in a
crowded shopping mall, a mother may ask her child,
“Have you seen your sister?” If there were a positive
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response, this may then be followed by a request to know
the time and place of the last sighting, or perhaps by a
request to go look for her. Here the mother is using the
eyes, face recognition ability, memory persistence, and
mobility of the child to perform the search. If the search
fails, the mother may then ask the mall manager to give
a “lost child” announcement over the public address
system. Eventually the police may be asked to employ
these human search services on a much wider scale by
showing a photograph of the missing child on the tele-
vision to ask the wider community for assistance in the
search.

On the IrisNet the mother could simply upload a
photograph of her child from the image store in her
mobile phone and the system would efficiently look for
the child in an ever-widening geographic search space
until contact was made. Clearly in the case of IrisNet,
there is no possibility of humans being employed to
identify all the faces captured by the planetary sensor
Web to support the search, so the task must be auto-
mated. Such a service raises inevitable privacy con-
cerns, which must be addressed, but the service also has
the potential for great public good as in this example of
reuniting a worried mother with her lost child.

In addition to person recognition and location ser-
vices on a planetary sensor Web, another interesting
commercial application of face recognition is a system
to semi-automatically annotate video streams to pro-
vide content for digital interactive television. A similar
idea was behind the MIT MediaLab Hypersoap project
(Agamanolis & Bove, 1997). In this system, users touch
images of objects and people on a television screen to
bring up information and advertising material related to
the object. For example, a user might select a famous
actor and then a page would appear describing the actor,
films in which they have appeared, and the viewer might
be offered the opportunity to purchase copies of their
other films. Automatic face recognition and tracking
would greatly simplify the task of labeling the video in
post-production — the major cost component of pro-
ducing such interactive video.

Now we will focus on the crucial technology under-
pinning such data mining services — automatically rec-
ognizing faces in image and video databases.

MAIN THRUST

Robust Face Recognition

Robust face recognition is a challenging goal because of
the gross similarity of all human faces compared to
large differences between face images of the same

person due to variations in lighting conditions, view
point, pose, age, health, and facial expression. An ideal
face recognition system should recognize new images
of a known face and be insensitive to nuisance variations
in image acquisition. Yet, differences between images of
the same face (intraclass variation) due to these nuisance
variations in image capture are often greater than those
between different faces (interclass variation) (Adinj,
Moses, & Ulman, 1997), making the task extremely chal-
lenging. Most systems work well only with images taken
under constrained or laboratory conditions where light-
ing, pose, and camera parameters are strictly controlled.
This requirement is much too strict to be useful in many
data mining situations when only a few sample images are
available, such as in recognizing people from surveillance
videos from a planetary sensor Web or searching historic
film archives.

Recent research has been focused on diminishing
the impact of nuisance factors on face recognition. Two
main approaches have been proposed for illumination
invariant recognition. The first is to represent images
with features that are less sensitive to illumination
change (Yilmaz & Gokmen, 2000; Gao & Leung, 2002),
such as using the edge maps of an image. These methods
suffer from robustness problems because shifts in edge
locations resulting from small rotation or location er-
rors significantly degrade recognition performance.
Yilmaz and Gokmen (2000) proposed using “hills” for
face representation; others use derivatives of the inten-
sity (Edelman, Reisfeld, & Yeshurun, 1994; Belhumeur
& Kriegman, 1998). No matter what kind of representa-
tion is used, these methods assume that features do not
change dramatically with variable lighting conditions.
Yet this is patently false as edge features generated from
shadows may have a significant impact on recognition.

The second main approach is to construct a low
dimensional linear subspace for the images of faces
taken under different lighting conditions. This method
is based on the assumption that images of a convex
Lambertian object under variable illumination form a
convex cone in the space of all possible images
(Belhumeur & Kriegman, 1998).  Once again, it is hard
for these systems to deal with cast shadows. Further-
more, such systems need several images of the same
face taken under different lighting source directions to
construct a model of a given face — in data mining
applications it is often impossible to obtain the required
number of images. Experiments performed by Adinj,
Moses, and Ulman (1997) show that even with the best
image representations using illumination insensitive
features and the best distance measurement, the
misclassification rate is often more than 20%.

As for expression invariant face recognition, this is
still an open problem for machine recognition and is
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