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Portfolio Optimization using 
Rank Correlation

INTRODUCTION

Since the introduction of modern portfolio 
theory (Markowitz, 1952), quantitative analysis 
of financial data has contributed tremendously 
to informed decision making in finance, such 
as portfolio selection, risk management, and 
asset pricing, to name a few. As we witness the 
tremendous growth in the financial markets both 
in terms of the quantum of data generated and in-
novative financial products created, effective risk 
management has become an even more pressing 
need for the financial industry.

Apart from the so-called risk-free assets, such 
as treasury securities, most investments offer 
returns with some form of risk. While individual 
assets may carry varying degrees of return-risk 
characteristics, collectively, when incorporated 
within a portfolio of investments, the resulting 
portfolio is expected to yield a certain diversifi-
cation of the risks so as to offer the investor with 
an acceptable return-risk profile. The success of 
this process is largely dependent not only on the 
specific exposure (or allocation) in each asset, 
and thus, its own marginal distributions of return, 
but also on the correlations among returns of the 
underlying assets. A diversification is expected to 
lessen risk exposure since each asset class has a 
different correlation to the others; when stocks rise, 
for example, bonds often fall. At a time when the 
stock market begins to fall, real estate may begin 
generating above average returns. Therefore, a 
specific investment allocation is influenced sig-

nificantly by the underlying correlations among 
different assets.

Given the current price of an asset, its return 
(over a specific period of time in the future) is the 
price difference (positive/negative if the future 
price is higher/lower than the current) divided 
by the current price. Since the future price is 
unknown, asset return is uncertain and it may 
be modeled as a random variable. Considering 
a specific historical period of (observed) asset 
prices, the future asset return distribution may be 
hypothesized, and its key statistical parameters 
estimated, such as the mean and variance. Suppose 
there is a set of assets under consideration and 
their asset returns are shown to be uncorrelated. 
It is well known that by increasing the number of 
such assets in a portfolio, risk in portfolio return 
is diversified, and in the limit when the number 
of such assets becomes infinite, the resulting 
portfolio risk asymptotically disappears. However, 
the existence of such a large group of perfectly 
uncorrelated instruments defies the common-logic 
in the market place. Consequently, the investor is 
confronted with the question of how to diversify 
the portfolio risk in the face of existing correlated 
assets. The seminal work by Harry Markowitz 
(1952) is an attempt in this direction, whereby 
an optimal set of weights is determined for each 
asset simultaneously to achieve a prescribed level 
of expected return in the future whilst associating 
such a portfolio with a minimum level of risk, 
with risk being described by portfolio variance 
(Elton, Gruber, Brown, & Goetzmann, 2006). 
In this approach, the basic rule is simple: low 
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correlation makes for good diversification and 
highly correlated assets or asset classes are to be 
avoided. Thus, correlations play a fundamental and 
important role in the investment selection process.

Throughout the decades since, the above 
quantitative framework has inspired a large body 
of further work in financial data analysis and 
modeling, resulting in a wide range of software 
programs and tools that serve as decision support 
or help execute automated trading. There are also 
several subtle issues associated with estimating 
correlations, such as appropriate data transforma-
tion to ensure the assumed distribution, choice 
of statistical models, and predictions based on 
historical and simulated data.

An important aspect of correlations in aiding 
portfolio selection is the specific notion of the co-
varying nature of asset returns. Modern risk man-
agement calls for an understanding of stochastic 
dependence that goes well-beyond simple linear 
(i.e., Pearson’s) correlation (Rodgers & Nicewan-
der, 1988). However, the dependency between 
risks, say, in the case of non-linear derivative 
assets, invalidates many of the distributional as-
sumptions underlying the use of linear correlation. 
Stock returns, in empirical testing, violate these 
assumptions due to their inherent skewness and 
heavy-tailedness, i.e., multivariate stock returns 
distributions are non-elliptical (Chicheportiche & 
Bouchaud, 2012). In such a situation, the elegance 
of using linear correlations within Markowitz 
risk management framework breaks down. We 
conjecture that rank correlations among asset 
returns are preferable in this case in modeling the 
dependency structure.

In this work, we focus on Kendall’s τ correla-
tion coefficient (Kendall, 1970) with financial 
data. When the historical data set is sizeable 
(involving a large volume of transactions as 
needed for short term portfolio optimization), 
rank correlations become computationally more-
intensive. In the case of intra-day high frequency 
trading using, say, hourly or 15 second-pricing 
information, computational complexities further 

compound barring the analyst from engaging in 
trading action with finer granularity.

While the Pearson’s correlation measures the 
degree of linear dependence between two random 
variables, Kendall’s rank correlation measures 
the degree of monotonic dependence (Embrechts, 
Mcneil, & Straumann, 2012). In this chapter, we 
illustrate how rank correlations can be efficiently 
computed based on an iterative scheme we develop. 
Moreover, by way of application to equity portfolio 
optimization, we demonstrate the superiority of 
the rank correlation-based portfolio selection us-
ing out-of-sample testing of the optimal portfolios 
so-devised.

BACKGROUND

Stock returns are quite well-known to have non-
symmetric distributions. More importantly, stock 
return distributions are shown to have ‘fatter’ tails 
than the normal distribution would imply (Ziemba, 
2003). Consequently, normal distribution assump-
tion (or many other theoretical distributions) often 
leads to portfolios that perform poorly in practice 
(Edirisinghe, 2007, 2010). The main reason is that 
extreme events do occur much more frequently 
than most theoretical distributions correspond to. 
A linear correlation estimator such as Pearson’s 
correlation coefficient is known to be susceptible 
to heavy-tailed noise and outliers, and thus, the 
use of it to determine mean-variance optimized 
investment portfolios can lead to poor risk control 
of the investments. Stock correlations should not be 
viewed as static; in fact, they can vary dynamically, 
and sometimes to a great extent (Engle, 2009).

A well-known deficiency of the linear correla-
tion is that it is not invariant under nonlinear 
strictly increasing transformations, say T :ℜ → ℜ  
of two random variables X and Y. That is, in gen-
eral, ρ ρT X T Y X Y( ) ( )( ) ≠ ( ), , , and in particu-

lar, ρ ρT X T Y X Y( ) ( )( ) ≤ ( ), ,  where X and Y 

are bivariate normal, see for instance, Kendall 

Portfolio Optimization using Rank CorrelationPortfolio Optimization using Rank Correlation

P



 

 

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/portfolio-optimization-using-rank-

correlation/107375

Related Content

Biased Randomization of Classical Heuristics
Angel A. Juan, José Cáceres-Cruz, Sergio González-Martín, Daniel Rieraand Barry B. Barrios (2014).

Encyclopedia of Business Analytics and Optimization (pp. 304-314).

www.irma-international.org/chapter/biased-randomization-of-classical-heuristics/107236

Exploring Insurance and Natural Disaster Tweets Using Text Analytics
Tylor Huizinga, Anteneh Ayanso, Miranda Smoorand Ted Wronski (2017). International Journal of Business

Analytics (pp. 1-17).

www.irma-international.org/article/exploring-insurance-and-natural-disaster-tweets-using-text-analytics/169217

Incubators Management Models
Andreia de Bem Machado, Araci Hack Catapanand Maria José Sousa (2018). Handbook of Research on

Strategic Innovation Management for Improved Competitive Advantage (pp. 85-95).

www.irma-international.org/chapter/incubators-management-models/204217

Server Operating Environment and Business Continuity Drivers
Nijaz Bajgoric (2009). Continuous Computing Technologies for Enhancing Business Continuity (pp. 79-

102).

www.irma-international.org/chapter/server-operating-environment-business-continuity/7134

The Prediction of Workplace Turnover Using Machine Learning Technique
Youngkeun Choiand Jae Won Choi (2021). International Journal of Business Analytics (pp. 1-10).

www.irma-international.org/article/the-prediction-of-workplace-turnover-using-machine-learning-technique/288055

http://www.igi-global.com/chapter/portfolio-optimization-using-rank-correlation/107375
http://www.igi-global.com/chapter/portfolio-optimization-using-rank-correlation/107375
http://www.irma-international.org/chapter/biased-randomization-of-classical-heuristics/107236
http://www.irma-international.org/article/exploring-insurance-and-natural-disaster-tweets-using-text-analytics/169217
http://www.irma-international.org/chapter/incubators-management-models/204217
http://www.irma-international.org/chapter/server-operating-environment-business-continuity/7134
http://www.irma-international.org/article/the-prediction-of-workplace-turnover-using-machine-learning-technique/288055

