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INTRODUCTION

The amount of available data is increasing very fast. With
this data the desire for data mining is also growing. More
and larger databases have to be searched to find interest-
ing (and frequent) elements and connections between
them. Most often, the data of interest is very complex. It
is common to model complex data with the help of graphs
consisting of nodes and edges that often are labeled to
store additional information. Applications can be found
in very different fields. For example, the two-dimensional
structure of molecules often is modeled as graphs having
the atoms as nodes and bonds as edges. The same holds
for DNA or proteins. Web pages and links between Web
pages also can be represented as graph. Other examples
are social networks as citation networks and CAD cir-
cuits; graphs can be found in a lot of different application
areas.

Having a graph database, it is interesting to find
common graphs in it, connections between different
graphs, and graphs that are subgraphs of a certain number
of other graphs. This graph-based data mining has be-
come more and more popular in the last few years. When
analyzing molecules, it is interesting to find patterns—
called fragments in this context—that appear at least in a
certain percentage of molecules. Another problem is find-
ing fragments that are frequent in one part of the database
but infrequent in the other. This way, this substructure is
separating the database into active and inactive mol-
ecules (Borgelt & Berthold, 2002). Similar problems occur
for protein databases. Here, graph data mining can be
used to find structural patterns in the primary, secondary,
and tertiary structure of protein categories (Cook & Holder,
2000).

Another application area is Web searches (Cook,
Manocha & Holder, 2003). Existing search engines use
linear feature matches. Using graphs as underlying data
structure, nodes represent pages; documents or docu-
ment keywords and edges represent links between them.
Posing a query as a graph means a smaller graph has to be
embedded in the larger one. The graph modeling the data
structure can be mined to find similar clusters.

There are a lot of application areas where graph data
mining is helpful. Despite the need for graph data mining,
the first published algorithm in this area appeared in the
mid-1990s. Subdue (Cook & Holder, 2000) is the oldest
algorithm but is still used in various applications. Being
the first, the number of extensions available for Subdue is
enormous. The algorithm is combined with background
knowledge, inexact graph matching, and there also is a
parallelized variant available. Supervised and unsuper-
vised mining is possible. It took a few more years before
more and faster approaches appeared. In Helma, Kramer,
and de Raedt (2002), graph databases are mined for simple
paths; for a lot of other applications, only trees are of
interest (El-Hajj & Zaïane, 2003; Rückert & Kramer, 2004).
Also, inductive logic programming (Finn et al., 1998) was
applied in this area. At the beginning of the new millen-
nium, finally more and more and everytime faster ap-
proaches for general mining of graph databases were
developed (Borgelt & Berthold, 2002; Inokuchi,Washio &
Motoda, 2003; Kuramochi & Karypis, 2001; Yan & Han,
2002). The latest development, a system named Gaston
(Nijssen & Kok, 2004) combines mining for paths, trees,
and graphs leading to a fast and efficient algorithm.

BACKGROUND

Theoretically, mining in graph databases can be modeled
as the search in the lattice of all possible subgraphs. In
Figure 1, a small example is shown based on one graph
with six nodes labeled  A,B,C as shown at the bottom of
the figure. All possible subgraphs of this small graph are
listed in this figure. At the top of the figure, the empty
graph modeled with * is shown. In the next row, all
possible subgraphs containing just one node (or zeros
edges) are listed. The second row contains subgraphs
with one edge. The parent-child relation between the
subgraphs (indicated by lines) is the subgraph property.
The empty graph can be embedded in every graph con-
taining one node. The graph containing just one node
labeled A can be embedded in a one-edge graph contain-
ing nodes A and C. Please note that in Figure 1, no graph
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with one edge is given containing nodes labeled A and B.
As there is no such subgraph in our running example, the
lattice does not contain a graph like this. Only graphs that
are real subgraphs are listed in the lattice. In the third row,
graphs with two edges are shown, and so on. At the
bottom of Figure 1, the complete graph with five edges is
given. Each subgraph given in Figure 1 can be embedded
in this graph. All graph mining algorithms have in common
that they search this subgraph lattice. They are interested
in finding a subgraph (or several subgraphs) that can be
embedded as often as possible in the graph to be mined.
In Figure 1, the circled graph can be embedded twice in the
running example.

When mining real-life graph databases, the situation,
of course, is much more complex. Not only one, but a lot
of graphs are analyzed, leading to a very large lattice.
Searching this lattice can be done depth or breadth first.
When searching depth first in Figure 1, the first discov-
ered subgraph will be A followed by A-C, A-C-C, and so
forth. So, first, all subgraphs containing A, in the next
branch all containing B are found. If the lattice is traversed
breadth first, all subgraphs in one level of the lattice (i.e.,
structures that have the same number of edges) are
searched before the next level is started. The main disad-
vantage of breadth first search is the larger memory
consumption, because in the middle of the lattice, a large

amount of subgraphs has to be stored. With depth-first
search, only structures whose amount is proportional to
the size of the biggest graph in the database have to be
recorded during the search.

Building this lattice of frequent subgraphs involves
two main steps: candidate generation, where new sub-
graphs are created out of smaller ones; and support
computation, where the frequency or support of the new
subgraphs in the database is determined. Both steps are
highly complex, and, thus, various algorithms and tech-
niques have been developed to find frequent subgraphs
in finite time with reasonable resource consumptions.

MAIN THRUST

We will now have a more detailed look at the two main
steps of the search mentioned previously—candidate
generation and support computation. There are two popu-
lar ways of creating new subgraphs: merging smaller
subgraphs that share a common core (Inokuchi et al.,
2002; Kuramochi & Karypis, 2001) or extending sub-
graphs edge by edge (Borgelt & Berthold, 2002; Yan &
Han, 2002).

The merge process can be explained by looking at the
subgraph lattice shown in Figure 1. The circled subgraph

Figure 1. The lattice of all subgraphs in a graph
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