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INTRODUCTION

The emergence of remote sensing, scientific simulation
and other survey technologies has dramatically enhanced
our capabilities to collect temporal data. However, the
explosive growth in data makes the management, analy-
sis, and use of data both difficult and expensive. To meet
these challenges, there is an increased use of data mining
techniques to index, cluster, classify and mine associa-
tion rules from time series data (Roddick & Spiliopoulou,
2002; Han, 2001). A major focus of these algorithms is to
characterize and predict complex, irregular, or suspicious
activity (Han,2001).

BACKGROUND

A time series database contains sequences of values
typically measured at equal time intervals. There are two
main categories of temporal sequences: transaction-
based sequences and event sequences. A transaction-
based sequence includes an identifier such as a customer
ID, and data mining revolves around finding patterns
within transactions that have matching identifiers. An
example pattern is “A customer who bought Microsoft
and Intel stock is likely to buy Google stock later.” Thus,
the transaction has a definite boundary around known
items of interest. There are many techniques that address
these problems (Roddick & Spiliopoulou, 2002; Han,
2001).

Data analysis on event sequences is enormously
more complex than transactional data analysis. There are
no inherently defined boundaries around factors that
might be of interest. The factors of interest themselves
may not be obvious to domain experts. Temporal event
sequence mining algorithms must be able to compute
inference from volumes of data, find the interesting
events involved, and define the boundaries around them.
Anexample patternis “A La Nifia weather pattern is likely
to precede drought in the western United States.” La Nifia
weather data is based on Pacific Ocean surface tempera-
tures and atmospheric values, and drought data is based
on precipitation data from several weather stations lo-
cated in the western United States. As illustrated by this

example, sequential data analysis must be able to find
relationships among multiple time series. The sheer num-
ber of possible combinations of interesting factors and
relationships between them can easily overwhelm human
analytical abilities. Often there is a delay between the
occurrence of an event and its influence on the dependent
variables. These factors make finding interesting patterns
difficult.

One of the most common techniques to find interesting
patterns is association rule mining. Association rules are
implications between variables in the database. The prob-
lem was first defined in the context of the market basket
data to identify customers’ buying habits (Agrawal et al.,
1993), where the Apriori algorithm was introduced. Let/ =
I1,1,...1 be a set of binary attributes, called items. Let 7
be a database of transactions. An association rule r is an
implication of the form X = Y, where X and Y are sets of
items in /, and XNY=0. Xis the rule antecedent, Y is the
rule consequent. Support ofrule X = Yin database 7T'is the
percentage of transactions in 7'that contain X U Y. The rule
holds in T'with confidence c if ¢% of the transactions in 7'
that contain X also contain Y. For example, it is of interest
to a supermarket to find that 80% of the transactions that
contain milk also contain eggs and 5% of all transactions
include both milk and eggs. Here the association rule is
milk = eggs, with 80% is the confidence of the rule and 5%
support.

This paper provides the status of current temporal
association rule mining methods used to infer knowledge
for a group of event sequences. The goal of these tools is
to find periodic occurrences of factors of interest, rather
than to calculate the global correlation between the se-
quences. Mining association rules is usually decomposed
into three sub-problems: 1) prepare the data for analysis,
2) find frequent patterns, and 3) generate association rules
from the sets representing those frequent patterns.

MAIN THRUST

Events and Episodes

To prepare time series data for association rule mining, the
data is discretized and partitioned into sequences of
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events. Typically, the time series is normalized and seg-
mented into partitions that have similar characteristics of
data within a given interval. Each partition identifier is
called an event type. Partitioning methods include sym-
bolizing (Linetal.,2003) and intervals (Hoppner, 2002).
Different partitioning methods and interval sizes produce
diverse discretized versions of the same dataset. This
step relies on domain-expert involvement for proper
discretization. When multivariate sequences are used,
eachvariable isnormalized and discretized independently.
The time granularity (duration) is converted to a single
(finest) granularity before the discovery algorithms are
applied to the combined sequences (Bettini et al., 1998).

A discretized version of the time series is referred to
as an event sequence. An event sequence S is a finite,
time-ordered sequence of events (Mannila et al., 1995).
Thatis, S = (e, e,...e ). Aneventis an occurrence of an
event type at a given timestamp. The time that a given
evente, occursis denoted 7, and i <i+/ forall i timestamps
in the event sequence. A sequence includes events from
a single finite set of event types. An event type can be
repeated multiple times in a sequence. For example, the
event sequence §1 = AABCAB is a sequence of 6 events,
from a set of 3 event types {A,B,C}. In this event se-
quence, an A event occurs at time 1, followed by another
A event, followed by a B event, and so on. The step size
between events is constant for a given sequence.

An episode in an event sequence is a combination of
events with partially specified order (Mannilaetal., 1997).
It occurs in a sequence if there are occurrences of events
in an order consistent with the given order, within a given
time bound (window width). Formally, an episode a is a
pair (V, ordering), where V' is a collection of events and
the ordering is parallel if no order is specified, and serial
if the events of the episode have fixed order. The episode
length is defined as the number of events in the episode.

Finding Frequent Episodes Based on
Sliding Window Technologies

The founding work on finding frequent episodes in se-
quences is Mannila et al. (1995). Frequent episodes are
discovered by using asliding window approach, WINEPI.
A window on an event sequence S is an event subse-
quence, w= e, e, ,...e,. where the width of window w,
denoted d, is the time interval of interest. The set of all
windows w on §, with a width of d is denoted W(S,d). In
this system, the value of the window width is user-
specified, varying the closeness of event occurrences. To
process data, the algorithm sequentially slides the win-
dow of width d one step at a time through the data. The
frequency of an episode a is defined as the fraction of

windows in which the episode occurs. For example, in the
sequence ‘31 above, ifasliding window of width 3 isused,
serial episode a = AB occurs in the first window (AAB),
the second window (ABC), and the fourth window (CAB).!
The guiding principle of the algorithm lies in the “down-
ward-closed’’ property of frequency, which means every
subepisode is at least as frequent as its superepisode
(Mannilaetal., 1995). As with the Apriori method, candi-
date episodes with (k+1) events are generated by joining
frequent episodes that have & events in common, and
episodes that do not meet a user-specified frequency
threshold are pruned.

The WINEPI algorithm was improved by Harms et al.
(2001) to use only a subset of frequent episodes, called
frequent closed episodes, based on closures and formal
conceptanalysis (Wille, 1982). A frequent closed episode
Xis the intersection of all frequent episodes containing X.
For example, in the éISequence, using a window width
d =3, and a minimum frequency of three windows, serial
episode o= AB is a frequent closed episode since no
larger frequent episode contains it?, and it meets the
minimum frequency threshold. Using closed episodes
results in a reduced input size and in a faster generation
of the episodal association rules, especially when events
occur in clusters. Harms et al. (2001) use an inclusion
constraint set to target specific subsets of episodes.

In Hoppner (2002), multivariate sequences are divided
into small segments and discretized based on their quali-
tative description (such as increasing, high value, con-
vexly decreasing, etc.). Patterns are discovered in the
interval sequences based on Allen’s temporal interval
logic (Allan, 1983). For example, the pattern “A meets B”
occurs ifinterval A terminates at the same pointin time at
which B starts. For any pair of intervals there isaset of 13
possible relationships, including after, before, meets, is-
met-by, starts, is-started-by, finishes, is-finished-by,
overlaps, is-overlapped-by, during, contains, and equals.
Aswith WINEPI, this approach finds frequent patterns by
using sliding windows and creating a set of candidate
(k+1)-patterns from the set of frequent patterns of size .

An approach to detecting suspicious subsequences
in event sequences is presented in Gwadera et al. (2003).
Using an approach based on WINEPI, they quantify: 1)
the probability of a suspicious subsequence § occurring
in a sequence S of events within a window of size d, 2)
the number of distinct windows containing § as a subse-
quence, 3) the expected number of such occurrences, and
4) the variance of the subsequence $. They also establish
its limiting distribution that allows users to set an alarm
threshold so that the probability of false alarms is small.

Ng & Fu (2003) presented a method to mine frequent
episodes using a tree-based approach for event se-
quences. The process is comprised of two phases: 1) tree
construction and 2) mining frequent episodes. Each
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