
1166

!����	��(�����)#�����	,�����	��	����	������

Malcolm J. Beynon
Cardiff University, UK

Copyright © 2006, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

The origins of Dempster-Shafer theory (DST) go back
to the work by Dempster (1967) who developed a sys-
tem of upper and lower probabilities. Following this, his
student Shafer (1976), in his book “A Mathematical
Theory of Evidence” added to Dempster’s work, includ-
ing a more thorough explanation of belief functions. In
summary, it is a methodology for evidential reasoning,
manipulating uncertainty and capable of representing
partial  knowledge (Haenni & Lehmann, 2002;
Kulasekere, Premaratne, Dewasurendra, Shyu, & Bauer,
2004; Scotney & McClean, 2003).

The perception of DST as a generalization of Baye-
sian theory (Shafer & Pearl, 1990), identifies its sub-
jective view, simply, the probability of an event indi-
cates the degree to which someone believes it. This is in
contrast to the alternative frequentist view, understood
through the “Principle of Insufficient Reason”, whereby
in a situation of ignorance a Bayesian approach is forced
to evenly allocate subjective (additive) probabilities
over the frame of discernment.

The development of DST includes analogies to rough
set theory (Wu, Leung, & Zhang, 2002) and its operation
within neural and fuzzy environments (Binaghi, Gallo, &
Madella, 2000; Yang, Chen, & Wu, 2003). Techniques
based around belief decision trees (Elouedi, Mellouli,
& Smets, 2001), multi-criteria decision making (Beynon,
2002) and non-parametric regression (Petit-Renaud &
Denœux, 2004), utilize DST to allow analysis in the
presence of uncertainty and imprecision. This is dem-
onstrated with the CaRBS (Classification and Ranking
Belief Simplex) system for object classification, see
Beynon (2005).

BACKGROUND

The terminology inherent within DST starts with a finite
set of hypotheses Θ (frame of discernment).  A basic
probability assignment (bpa) or mass value is a func-
tion m: 2Θ → [0,1] such that: m(∅) = 0 (∅ - empty set)
and ∑ Θ∈2 )(A Am  = 1 (2Θ the power set of Θ). If the
constraint m(∅) = 0 is not imposed then the transferable
belief model can be adopted (Elouedi, Mellouli, &
Smets, 2001; Petit-Renaud & Denœux, 2004). Any A ∈ 2Θ,

for which m(A) is non-zero is called a focal element and
represents the exact belief in the proposition depicted by
A. From one source of evidence, a set of focal elements and
their mass values can be defined a body of evidence
(BOE).

Based on a BOE, a belief measure is a function Bel:
2Θ → [0,1], defined by Bel(A) = ∑ ⊆ AB Bm )( , for all A ⊆
Θ. It represents the confidence that a specific proposi-
tion lies in A or any subset of A. A plausibility measure
is a function Pls: 2Θ → [0,1], defined by Pls(A) =

∑ ∅≠∩BA Bm )( , for all A ⊆ Θ. Clearly Pls(A) represents
the extent to which we fail to disbelieve A. These mea-
sures are clearly related to one another, Bel(A) = 1 −
Pls(¬A) and Pls(A) = 1 − Bel(¬A), where ¬A refers to its
compliment ‘not A’.

To collate two or more sources of evidence (e.g.
m1(⋅) and m2(⋅)), DST provides a method to combine
them, using Dempster’s rule of combination. If m1(⋅) and
m2(⋅) are independent BOEs, then the function m1 ⊕ m2:
2Θ → [0,1], defined by:

[m1 ⊕ m2](y) = 
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where k = ∑ ∅=∩BA BmAm )()( 21 , is a mass value with y ⊆ Θ.
The term (1 − k), can be interpreted as a measure of conflict
between the sources. It is important to take this value into
account for evaluating the quality of combination: when
it is high, the combination may not make sense and
possibly lead to questionable decisions (Murphy, 2000).

To demonstrate the utilization of DST, the example of
the murder of Mr. Jones is considered, where the murderer
was one of three assassins, Peter, Paul and Mary, frame
of discernment Θ = {Peter, Paul, Mary}. There are two
witnesses. Witness 1, is 80% sure that it was a man, the
concomitant BOE, defined m1(⋅), includes m1({Peter, Paul})
= 0.8. Since we know nothing about the remaining mass
value it is allocated to Θ, m1({Peter, Paul, Mary}) = 0.2.
Witness 2, is 60% confident that Peter was leaving on a
jet plane when the murder occurred, a BOE defined m2(⋅),
includes m2({Paul, Mary}) = 0.6 and m2({Peter, Paul, Mary})
= 0.4.

The aggregation of these two sources of information,
using Dempster’s combination rule, is based on the inter-
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section and multiplication of focal elements and mass
values from the BOEs m1(⋅) and m2(⋅). Defining this BOE
m3(⋅), it can be found; m3({Paul}) = 0.48, m3({Peter, Paul}) =
0.32, m3({Paul, Mary}) = 0.12 and m3({Peter, Paul, Mary}) =
0.08. This combined evidence has a more spread-out allo-
cation of mass values to varying subsets of Θ. Further,
there is a general reduction in the level of ignorance
associated with the combined evidence. In the case of the
belief (Bel) and plausibility (Pls) measures, considering the
subset {Peter, Paul}, then Bel3({Peter, Paul}) = 0.8 and
Pls3({Peter, Paul}) = 1.0.

A second larger example supposes that the weather
in New York at noon tomorrow is to be predicted from
the weather today. We assume that it is in exactly one of
three states: dry (D), raining (R) or snowing (S), hence
the frame of discernment Θ = {D, R, S}. Let us presume
two pieces of evidence have been gathered: i) The tem-
perature today is below freezing and ii) The barometric
pressure is falling, i.e. a storm is likely. These pieces of
evidence are represented by the two BOEs mfreeze(⋅) and
mstorm(⋅), respectively, and are reported in Table 1.

For each BOE in Table 1 the exact belief (mass) is
distributed among the focal elements (excluding ∅).
For mfreeze(⋅), greater mass is assigned to {S} and {R, S},
for mstorm(⋅), greater mass is assigned to {R} and {R, S}.
Assuming that mfreeze(⋅) and mstorm(⋅) represent evidence
which are independent of each other, the BOE from the
combination of this evidence, defined mboth(⋅), is made
up of the mass values reported in Table 2.

The BOE mboth(⋅) represented in Table 2 has a lower
level of ignorance (mboth(Θ) = 0.0256), than both of the
original BOEs mfreeze(⋅) and mstorm(⋅). Amongst the other
focal elements, more mass is assigned to {R} and {S},
a consequence of the greater mass assigned to the
associated focal elements in the other two BOEs. The
other focal elements all exhibit net losses in their mass
values. As with the assassin example, measures of belief
(Bel) and plausibility (Pls) could be found, to offer
evidence (confidence) on combinations of states repre-
senting tomorrow’s predicted weather.

This section is closed with some cautionary words still
true to this day (Pearl, 1990), ‘Some people qualify any

model that uses belief functions as Dempster-Shafer. This
might be acceptable provided they did not blindly accept
the applicability of Dempster’s rule of combination (and
others). Such critical - and in fact often inappropriate - use
of these rules explain most of the errors encountered in the
so-called Dempster-Shafer literature’.

MAIN THRUST

This section outlines one of many different methods
which utilizes DST, within a data mining environment.
The CaRBS system is a data mining technique for the
classification (and subsequent prediction) of objects to
a given hypothesis (x) and its compliment (¬x), using a
series of characteristic values (Beynon, 2005). The rudi-
ments of CaRBS are based on DST, and with two exhaus-
tive outcomes works on a binary frame of discernment
(BFOD). Subsequently, the aim of CaRBS is to construct a
BOE for each characteristic value in the evidential support
for the classification of an object to {x}, {¬x} and concomi-
tant ignorance {x, ¬x} (considered as uncertainty in subjec-
tive judgements), see Figure 1.

In Figure 1, stage a) shows the transformation of a
characteristic value vj,i (j

th object, ith characteristic) into
a confidence value cfi(vj,i), using a sigmoid function,
with control variables ki and θi. Stage b) transforms a
cfi(vj,i) into a characteristic BOE mj,i(⋅), made up of the three
mass values mj,i({x}), mj,i({¬x}) and mj,i({x, ¬x}), and from
Gerig, Welti, Guttman, Colchester, & Szekely (2000) are
defined by:
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and mj,i({x, ¬x}) = 1 - mj,i({x}) - mj,i({¬x}),

where Ai and Bi are two further control variables. When
either mj,i({x}) or mj,i({¬x}) are negative they are set to zero

Table 1. Mass values and focal elements for mfreeze(⋅) and mstorm(⋅)

Table 2. Mass values and focal elements for mboth(⋅)

BOE ∅ {D} {R} {S} {D, R} {D, S} {R, S} Θ 
mboth(⋅) 0.0 0.1282 0.2820 0.2820 0.0513 0.0513 0.1795 0.0256 

         

BOE ∅ {D} {R} {S} {D, R} {D, S} {R, S} Θ 
mfreeze(⋅) 0.0 0.1 0.1 0.2 0.1 0.1 0.2 0.2 
mstorm(⋅) 0.0 0.1 0.2 0.1 0.1 0.1 0.3 0.1 
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