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INTRODUCTION

Following the constant technological advancements that
provide more processing power and storage capacity,
scientific applications have emerged as a new field of
interest for the database community. Such applications,
termed Online Science Applications (OSA), require
continuous interaction with datasets of multidimen-
sional nature, mainly for performing statistical analy-
sis. OSA can seriously benefit from the ongoing re-
search for OLAP systems and the pre-calculation of
aggregate functions for multidimensional datasets. One
of the tools that we see fit for the task in hand is the
wavelet transformation. Due to its inherent multi-reso-
lution properties, wavelets can be utilized to provide
progressively approximate and eventually fast exact
answers to complex queries in the context of Online
Science Applications.

BACKGROUND

OLAP systems emerged from the need to deal effi-
ciently with large multidimensional datasets in support
of complex analytical and exploratory queries. Gray et
al. (Gray, Bosworth, Layman, & Pirahesh, 1996) dem-
onstrated the fact that analysis of multidimensional data
was inadequately supported by traditional relational
databases. They proposed a new relational aggregation
operator, the Data Cube, which accommodates aggrega-
tion of multidimensional data. The relational model,
however, is inadequate to describe such data, and an
inherent multidimensional approach using sparse arrays
was suggested in Zhao, Deshpande & Naughton (1997)
to compute the data cube. Since the main use of a data
cube is to support aggregate queries over ranges on the
domains of the dimensions, a large amount of work has

been focused on providing faster answers to such que-
ries at the expense of higher update and maintenance
cost. Pre-aggregation is the key term here, as it re-
sulted in performance benefits. Ho et al. (1997) pro-
posed a data cube (Prefix Sum) in which each cell stored
the summation of the values in all previous cells, so that
it can answer range-aggregate queries in constant time.
The maintenance cost of this technique, however, can be
as large as the size of the cube. A number of following
publications focused on balancing the trade-off be-
tween pre-aggregation benefits and maintenance costs.

It is not until recent years that the Wavelet Transfor-
mation was proposed as a means to do pre-aggregation
on a multidimensional dataset. However, most of these
approaches share the disadvantage of providing only
approximate answers by compressing the data. Vitter,
Wang, & Iyer have used the wavelet transformation to
compress a pre-processed version of the data cube
(1998) or the original data cube (Vitter & Wang, 1999),
constructing Compact Data Cubes. Lemire (2002) trans-
forms a pre-aggregated version of the data cube to
support progressive answering, whereas in Wu, Agrawal
& Abbadi (2000) and Chakrabarti, Garofalakis, Rastogi,
& Shim (2000) the data cube is directly transformed and
compressed into the wavelet domain, in a way similar to
image compression.

A totally different perspective in using wavelets for
scientific queries is proposed in Schmidt & Shahabi
(2002). Here, the answer to queries posed in scientific
applications is represented as the dot-product of a query
vector with a data vector. It has been shown (Schmidt &
Shahabi, 2002) that for a particular class of queries,
wavelets can compress the query vector making fast
progressive evaluation of these queries a reality. This
technique, as it based on query compression and not
data, can accommodate exact, approximate or progres-
sive query evaluation.
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�
MAIN THRUST

What is the Wavelet Transformation?

We will start our discussion by attempting to provide a
crude definition of the wavelet transformation, in par-
ticular the Discrete Wavelet Transformation (DWT). As
the name suggests, it is a transformation of some signal,
not too different from other well-known transforma-
tions such as Fourier, Laplace, and etcetera. In the
context of database applications, the signal is, in gen-
eral, a multivariate discrete signal that represents a
dataset. As a transformation DWT is, essentially, an-
other way to view a signal. The expectance, of course, is
that such a view will be more useful and provide more
information to the applications in hand.

DWT is lossless, or an orthonormal transformation
in signal processing terms, as is the case with the most
common transformations. This implies that its effects
can be reversed and thus the original signal can be
reconstructed in its entirety; a highly desirable prop-
erty. DWT achieves (lossless) compression by separat-
ing the “smooth” part of a signal from the “rough” and
iterating on the “smooth” part to further analyze the
signal. This is true, provided that the signal is relative
smooth, which is the case with real-life datasets and
especially with query signals, as we will see.

We can now give the crude definition we promised at
the beginning. The Discrete Wavelet Transformation is
a lossless transformation that provides a multi-resolu-
tion view of the “smooth” and “rough” parts of a signal.

An Example with Haar Wavelets

Haar wavelets are the simplest and were the first to be
discovered. The “smooth” version of the signal is pro-
duced by pairwise averaging, whereas the “rough” ver-
sion is produced by pairwise differencing. This is why
the Haar wavelet coefficients are called averages and
differences or details.

Using signal processing terminology, the “smooth”
version of the signal is produced by a low-pass filter,
which filters out the rough elements. On the other hand,
the “rough” version of the signal is produced by a high-
pass filter, which filters out the smooth elements.
Together, these filters are called a filterbank, and they
produce the smooth and rough views of the signal. DWT
is performed by chaining a filterbank on the output of
the low pass filter; doing so iteratively leads to the
multiresolution view of the signal. A digital filter is
simply comprised by a set of coefficients that multiply
the input to produce the output. As an example the low-

pass Haar filter is comprised by the coefficients { 2
1 , 2

1 }
which multiply input {a,b} to produce output 

2
)( ba + .

Similarly, the high-pass filters consists of the coefficients
{ 2

1 , 2
1− } which multiply input {a,b} to produce output

2
)( ba − . We say that the length of the Haar filter is 2, as

both low-pass and high-pass filters have 2 coefficients
and thus require an input of 2 to produce an output. Other
wavelets that are generated by longer filters exhibit better
performance in terms of separating the smooth and rough
elements.

In the example that follows, we will use the filters
{ 2

1 , 2
1 }  and { 2

1 , 2
1− } to avoid the ugly square roots for

illustration purposes. Let us consider a signal of 8 samples
(a vector of 8 values) {3,5,7,5,8,12,9,1} and let us apply the
DWT. We start by first taking pairwise averages: {4,6,10,5}.
We also get the following pairwise differences {-1,1,-2,4}.
For any two consecutive and non-overlapping pair of data
values a,b we get their average:  2

)( ba +  and their difference
divided by 2: 2

)( ba − . The result is 2 vectors each of half size
containing a smoother version of the signal, the averages,
and a rougher version, the differences; these coefficients
form the first level of decomposition. We continue by
constructing the averages and differences from the smooth
version of the signal: {4,6,10,5}. The new averages are
{5,7.5} and the new differences are {-1,2.5}, forming the
second level of decomposition. Continuing the process,
we get the average {6.25} and difference {-1.25} of the
new smooth signal; these form the third and last level of
decomposition. Note that 6.25 is the average of the entire
signal as it is produced by iteratively averaging pairwise
averages. Similarly, -1.25 represents the difference be-
tween the average of the first half of the signal and the
average of the second half. The final average {6.25} and
the differences produced at all levels of decomposition {-
1.25}, {-1,2.5}, {-1,1,-2,4} can perfectly reconstruct the
original signal. These form the Haar DWT of the original
signal: {6.25,-1.25,-1,2.5,-1,1,-2,4}. The key is that at each
level of decomposition the averages and differences can
be used to reconstruct the averages of the previous level.

Lossy compression in the DWT is achieved by
thresholding: only the coefficients whose energy is
above the threshold are preserved, whereas the rest are
implicitly set to 0. If we decide to keep half as many
coefficients the resulting wavelet vector contains the 4
highest (normalized by 2

1  at each level) coefficients:
{6.25,-1.25,0,2.5,0,0,0,4}. Then, the compressed decom-
posed signal is an approximation of the original:
{5,5,5,5,10,10,9,1}
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