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INTRODUCTION

Clustering analysis has been widely applied in diverse 
fields such as data mining, access structures, knowl-
edge discovery, software engineering, organization of 
information systems, and machine learning. The main 
objective of cluster analysis is to create groups of objects 
based on the degree of their association (Kaufman & 
Rousseeuw, 1990; Romesburg, 1990). 

There are two major categories of clustering algo-
rithms with respect to the output structure: partitional 
and hierarchical (Romesburg, 1990). K-means is a 
representative of the partitional algorithms. The out-
put of this algorithm is a flat structure of clusters. The 
K-means is a very attractive algorithm because of its 
simplicity and efficiency, which make it one of the fa-
vorite choices to handle large datasets. On the flip side, 
it has a dependency on the initial choice of number of 
clusters. This choice may not be optimal, as it should 
be made in the very beginning, when there may not 
exist an informal expectation of what the number of 
natural clusters would be. Hierarchical clustering algo-
rithms produce a hierarchical structure often presented 
graphically as a dendrogram. There are two main types 
of hierarchical algorithms: agglomerative and divisive. 
The agglomerative method uses a bottom-up approach, 
i.e., starts with the individual objects, each considered to 
be in its own cluster, and then merges the clusters until 
the desired number of clusters is achieved. The divisive 
method uses the opposite approach, i.e., starts with all 
objects in one cluster and divides them into separate 
clusters. The clusters form a tree with each higher level 
showing higher degree of dissimilarity. The height of 
the merging point in the tree represents the similarity 
distance at which the objects merge in one cluster. The 
agglomerative algorithms are usually able to generate 
high-quality clusters but suffer a high computational 
complexity compared with divisive algorithms.

In this paper, we focus on investigating the behavior 
of agglomerative hierarchical algorithms. We further 
divide these algorithms into two major categories: 
group based and single-object based clustering meth-
ods. Typical examples for the former category include 
Unweighted Pair-Group using Arithmetic averages 
(UPGMA), Centroid Linkage, and WARDS, etc. Single 
LINKage (SLINK) clustering and Complete LINKage 
clustering (CLINK) fall into the second category. We 
choose UPGMA and SLINK as the representatives of 
each category and the comparison of these two repre-
sentative techniques could also reflect some similarity 
and difference between these two sets of clustering 
methods. The study examines three key issues for 
clustering analysis: (1) the computation of the degree 
of association between different objects; (2) the desig-
nation of an acceptable criterion to evaluate how good 
and/or successful a clustering method is; and (3) the 
adaptability of the clustering method used under differ-
ent statistical distributions of data including random, 
skewed, concentrated around certain regions, etc. Two 
different statistical distributions are used to express 
how data objects are drawn from a 50-dimensional 
space. This also differentiates our work from some 
previous ones, where a limited number of dimensions 
for data features (typically up to three) are considered 
(Bouguettaya, 1996; Bouguettaya & LeViet, 1998). In 
addition, three types of distances are used to compare the 
resultant clustering trees: Euclidean, Canberra Metric, 
and Bray-Curtis distances. The results of an exhaustive 
set of experiments that involve data derived from 50-
dimensional space are presented. These experiments 
indicate a surprisingly high level of similarity between 
the two clustering techniques under most combinations 
of parameter settings.

The remainder of this paper is organized as follows. 
Section 2 discusses the clustering techniques used in 
our evaluation and describes the various distributions 
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used to derive our experimental data. Section 3 outlines 
the experimental methodology and Section 4 presents 
a summary of our results. Finally, concluding remarks 
are drawn in Section 5.

BACKGROUND

In this section, we outline a set of key elements for 
conducting clustering analysis. These include distances 
of similarity, coefficients of correlation, clustering 
methods, and statistical distributions of data objects. 
In what follows, we will give a detailed discussion of 
each of these elements. Finally, we present a general 
algorithm, which outlines the procedure of constructing 
clustering in our study.

Distances of Similarity

To cluster data objects in a database system or in any 
other environment, some means of quantifying the 
degree of associations between items is needed. This 
can be a measure of distances or similarities. There 
are a number of similarity measures available and 
the choice may have an effect on the results obtained. 
Multi-dimensional objects may use relative or normal-
ized weight to convert their distance to an arbitrary 
scale so they can be compared. Once the objects are 
defined in the same measurement space as the points, it 
is then possible to compute the degree of similarity. In 
this respect, the smaller the distance the more similar 
two objects are. The most popular choice in computing 
distance is the Euclidean distance with:

222 )(...)()(),(
2211 nn jijiji xxxxxxjid −++−+−=

       (1)

Euclidean distance belongs to the family of 
Minkowski’s distances, which is defined as
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When m = 2, Minkowski’s distance becomes 
Euclidean distance. Another widely used distance, 
called Manhattan distance, is also a special case of 
Minkowski’s distance (when m is set to 1).

In addition to Euclidean distance, we also use another 
two types of distances to investigate how this element 
could affect clustering analysis: Canberra Metric and 
Bray-Curtis distances. Canberra Metric distance, a(i, 
j), has a range between 0.0 and 1.0. The data objects i 
and j are identical when a(i, j) takes value 0.0. Specifi-
cally, a(i, j) is defined as:
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Similarly, Bray-Curtis distance, b(i, j), also has 
values ranged from 0.0 to 1.0. The value 0.0 indicates 
the maximum similarity between two data objects. b(i, 
j) is defined as:
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Coefficients of Correlation

Coefficients of correlation are the measurements that 
describe the strength of the relationship between two 
variables X and Y. It essentially answers the question 
“how similar are X and Y?”. In our study, coefficients 
of correlation will be used to compare outcomes (i.e., 
hierarchical trees) of different clustering techniques. 
The values of the coefficients of correlation range from 
0 to 1 where the value 0 points to no similarity and the 
value 1 points high similarity. The coefficient of cor-
relation is used to find the similarity among (clustering) 
objects. The correlation r of two random variables X 
and Y where: X = (x1, x2, x3, . . . , xn) and Y = (y1, y2, 
y3, . . . , yn) is given by the formula:
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where 

E(X)= nxn

i i /)(
1∑ = ,  

E(Y)= nyn

i i /)(
1∑ = , and 



 

 

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/clustering-analysis-data-high-dimensionality/10827

Related Content

The Application of Data-Mining to Recommender Systems
J. Ben Schafer (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 45-50).

www.irma-international.org/chapter/application-data-mining-recommender-systems/10796

Integration of Data Sources through Data Mining
Andreas Koeller (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1053-1057).

www.irma-international.org/chapter/integration-data-sources-through-data/10951

Secure Computation for Privacy Preserving Data Mining
Yehuda Lindell (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1747-1752).

www.irma-international.org/chapter/secure-computation-privacy-preserving-data/11054

Sequential Pattern Mining
Florent Masseglia, Maguelonne Teisseireand Pascal Poncelet (2009). Encyclopedia of Data Warehousing and

Mining, Second Edition (pp. 1800-1805).

www.irma-international.org/chapter/sequential-pattern-mining/11062

Secure Building Blocks for Data Privacy
Shuguo Han (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1741-1746).

www.irma-international.org/chapter/secure-building-blocks-data-privacy/11053

http://www.igi-global.com/chapter/clustering-analysis-data-high-dimensionality/10827
http://www.igi-global.com/chapter/clustering-analysis-data-high-dimensionality/10827
http://www.irma-international.org/chapter/application-data-mining-recommender-systems/10796
http://www.irma-international.org/chapter/integration-data-sources-through-data/10951
http://www.irma-international.org/chapter/secure-computation-privacy-preserving-data/11054
http://www.irma-international.org/chapter/sequential-pattern-mining/11062
http://www.irma-international.org/chapter/secure-building-blocks-data-privacy/11053

