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INTRODUCTION

Compression-based data mining is a universal approach 
to clustering, classification, dimensionality reduction, 
and anomaly detection. It is motivated by results in 
bioinformatics, learning, and computational theory that 
are not well known outside those communities. It is 
based on an easily computed compression dissimilarity 
measure (CDM) between objects obtained by compres-
sion. The basic concept is easy to understand, but its 
foundations are rigorously formalized in information 
theory. The similarity between any two objects (XML 
files, time series, text strings, molecules, etc.) can be 
obtained using a universal lossless compressor. The 
compression dissimilarity measure is the size of the 
compressed concatenation of the two objects divided by 
the sum of the compressed sizes of each of the objects. 
The intuition is that if two objects are similar, lossless 
compressor will remove the redundancy between them 
and the resulting size of the concatenated object should 
be close the size of the larger of the two compressed 
constituent objects. The larger the CDM between two 
objects, the more dissimilar they are.

Classification, clustering and anomaly detection 
algorithms can then use this dissimilarity measure 
in a wide variety of applications. Many of these are 
described in (Keogh et al., 2004), (Keogh et al. 2007), 
and references therein. This approach works well when 
(1) objects are large and it is computationally expensive 
to compute other distances (e.g., very long strings); or 
(2) there are no natural distances between the objects or 
none that are reasonable from first principles. CDM is 
“parameter-free” and thus avoids over-fitting the data 
or relying upon assumptions that may be incorrect 
(Keogh et al., 2004). 

CDM enjoys the following properties:

1. Because it makes no distributional or modeling 
assumptions about the data, it allows true explor-
atory data mining.

2. The accuracy of CDM is often greatly superior 
to those of parameter-laden or model-based algo-
rithms, even if we allow these algorithms to search 
exhaustively over their parameter spaces.

3. CDM uses compression algorithms which are 
typically space and time efficient. As a conse-
quence, CDM can be much more efficient than 
other algorithms, in some cases by three or four 
orders of magnitude.

4. CDM makes no assumption about the format of 
the data, nor does it require extensive data clean-
ing to be effective.

BACKGROUND

The use of data compression to classify sequences is 
also closely related to the Minimum Description Length 
(MDL) and Minimum Message Length (MML) prin-
ciples (Grünwald, 2007), (Wallace, 2005). See keyword 
definitions at the end of the article. TheMDL/MMLprin-
ciple has generated an extensive body of literature in 
the data mining community. CDM is a related concept, 
but it requires no probabilistic concepts and can be 
universally applied.

CDM is based on the concept of Kolmogorov 
complexity, a measure of randomness of strings based 
on their information content (Li & Vitanyi, 1997). It 
was proposed by Kolmogorov in 1965 to quantify the 
randomness of strings and other objects in an objective 
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and absolute manner. The Kolmogorov complexity K(x) 
of a string x is defined as the length of the shortest pro-
gram capable of producing x on a universal computer 
— such as a Turing machine. Different programming 
languages will give rise to distinct values of K(x), but 
one can prove that the differences are only up to a 
fixed additive constant. Intuitively, K(x) is the minimal 
quantity of information required to generate x by an 
algorithm. The conditional Kolmogorov complexity 
K(x|y) of x to y is defined as the length of the shortest 
program that computes x when y is given as an auxiliary 
input to the program. The function K(xy) is the length 
of the shortest program that outputs y concatenated to 
x. In Li et al. (2001), the authors consider the distance 
between two strings, x and y, defined as
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which satisfies the triangle inequality, up to a small er-
ror term. A more mathematically precise distance was 
proposed in Li et al. (2003). Kolmogorov complexity 
is without a doubt the ultimate lower bound among 
all measures of information content. Unfortunately, it 
cannot be computed in the general case (Li and Vitanyi, 
1997). As a consequence, one must approximate this 
distance. It is easy to realize that universal compression 
algorithms give an upper bound to the Kolmogorov 
complexity. In fact, K(x) is the best compression that 
one could possibly achieve for the text string x. Given 
a data compression algorithm, we define C(x) as the 
size of the compressed size of x, C(xy) as the size of 
the compressed size of the concatenation of x and y 
and C(x|y) as the compression achieved by first train-
ing the compression on y, and then compressing x. 
For example, if the compressor is based on a textual 
substitution method, one could build the dictionary on 
y, and then use that dictionary to compress x. We can 
approximate (1) by the following distance measure
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The better the compression algorithm, the better 
the approximation of dc for dk is. Li et al., (2003) have 
shown that dc is a similarity metric and can be success-
fully applied to clustering DNA and text. However, the 
measure would require hacking the chosen compres-
sion algorithm in order to obtain C(x|y) and C(y|x). 

CDM simplifies this distance even further. In the next 
section, we will show that a simpler measure can be 
just as effective. 

A comparative analysis of several compression-
based distances has been recently carried out in Sculley 
and Brodley (2006). The idea of using data compres-
sion to classify sequences over finite alphabets is not 
new. For example, in the early days of computational 
biology, lossless compression was routinely used to 
classify and analyze DNA sequences. Refer to, e.g., 
Allison et al. (2000), Baronchelli et al. (2005), Farach 
et al. (1995), Frank et al. (2000), Gatlin (1972), Kennel 
(2004), Loewenstern and Yianilos (1999), Needham 
and Dowe (2001), Segen (1990), Teahan et al. (2000), 
Ferragina et al. (2007), Melville et al. (2007) and refer-
ences therein for a sampler of the rich literature existing 
on this subject. More recently, Benedetto et al. (2002) 
have shown how to use a compression-based measure 
to classify fifty languages. The paper was featured in 
several scientific (and less-scientific) journals, includ-
ing Nature, Science, and Wired.

MAIN FOCUS

CDM is quite easy to implement in just about any 
scripting language such as Matlab, Perl, or R. All that 
is required is the ability to programmatically execute 
a lossless compressor, such as gzip, bzip2, compress, 
WinZip and the like and store the results in an array. 
Table 1 shows the complete Matlab code for the com-
pression-based dissimilarity measure.

Once pairwise dissimilarities have been computed 
between objects, the dissimilarity matrix can be used for 
clustering (e.g. hierarchical agglomerative clustering), 
classification (e.g., k-nearest neighbors), dimensionality 
reduction (e.g., multidimensional scaling), or anomaly 
detection.

The best compressor to capture the similarities 
and differences between objects is the compressor 
that compresses the data most. In practice, one of a 
few easily obtained lossless compressors works well 
and the best one can be determined by experimenta-
tion. In some specialized cases, a lossless compressor 
designed for the data type provides better results (e.g., 
DNA clustering, Benedetto et al. 2002). The theoretical 
relationship between optimal compression and features 
for clustering is the subject of future research.
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