
81

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

DOI: 10.4018/978-1-4666-6026-7.ch005

Low-Overhead Development
of Scalable Resource-

Efficient Software Systems

ABSTRACT

As the variety of execution environments and application contexts increases exponentially, modern
software is often repeatedly refactored to meet ever-changing non-functional requirements. Although
programmer effort can be reduced through the use of standardised libraries, software adjustment for
scalability, reliability, and performance remains a time-consuming and manual job that requires high
levels of expertise. Previous research has proposed three broad classes of techniques to overcome these
difficulties in specific application domains: probabilistic techniques, out of core storage, and parallel-
ism. However, due to limited cross-pollination of knowledge between domains, the same or very similar
techniques have been reinvented all over again, and the application of techniques still requires manual
effort. This chapter introduces the vision of self-adaptive scalable resource-efficient software that is
able to reconfigure itself with little other than programmer-specified Service-Level Objectives and a
description of the resource constraints of the current execution environment. The approach is designed
to be low-overhead from the programmer’s perspective – indeed a naïve implementation should suf-
fice. To illustrate the vision, the authors have implemented in C++ a prototype library of self-adaptive
containers, which dynamically adjust themselves to meet non-functional requirements at run time and
which automatically deploy mitigating techniques when resource limits are reached. The authors de-
scribe the architecture of the library and the functionality of each component, as well as the process
of self-adaptation. They explore the potential of the library in the context of a case study, which shows
that the library can allow a naïve program to accept large-scale input and become resource-aware with
very little programmer overhead.

Wei-Chih Huang
Imperial College London, UK

William Knottenbelt
Imperial College London, UK

82

Low-Overhead Development of Scalable Resource-Efficient Software Systems

1. INTRODUCTION

Modern software engineers are faced with an
explosion in the number of execution environ-
ments in which their applications might execute
(e.g. smartphone, tablet, laptop, server, etc.). In
each of these potential execution environments,
each class of application is subject to different
resource constraints and may also be subject to
different Quality of Service (QoS) requirements.
Consider Figure 1, which presents the importance
of three common QoS parameters (performance,
memory efficiency, and reliability) in different
application contexts and execution environments.
For example, when a game is operated on a game
console, the game’s performance should be at a
very high level to meet players’ expectations, pos-
sibly leading to the use of more memory space and
higher electric power consumption. By contrast,
if the game is executed on a smartphone, lower
performance may be tolerated to save battery
power and to use less memory space. Similarly,
if a web browser runs on a smartphone, due to
high usage frequency of the web browser and
limited memory space of the smartphone, high
performance with low memory consumption is
expected. But when the web browser is executed

on a server or a game console, the demand of high
performance with low memory consumption is not
required because these two platforms can provide
sufficient memory space and are not frequently
used to surf the internet.

It is a major challenge to write software capable
of maintaining QoS in every possible execution
environment and application context, especially in
the face of bursty and/or high-intensity workloads
that may frequently stretch or exceed resource
limitations. To avoid unacceptable degradations
in the quality of user experience, it is necessary to
implement mechanisms for scalability, robustness
and intelligent resource exploitation. Even if sound
software engineering principles are applied to
maximise software reuse, there are major barriers
to the application of traditional software devel-
opment techniques in light of these challenges.
Specifically, significant manual reimplementa-
tion and refactoring must be carried out for each
execution environment, and substantial levels of
programmer expertise is necessary.

To address this situation, we propose a self-
adaptive framework for “intelligent” software
which adapts at run-time to the resource constraints
of its present execution environment, as well as
automatically scaling up to handle large input sizes,

Figure 1. The importance of QoS requirements on different application contexts and execution environments

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/low-overhead-development-of-scalable-resource-

efficient-software-systems/108612

Related Content

RFID Enabled Vehicular Network for Ubiquitous Travel Query
Tianle Zhang, Chunlu Wang, ZongWei Luo, Shuihua Hanand Mengyuan Dong (2013). Mobile and Web

Innovations in Systems and Service-Oriented Engineering (pp. 348-363).

www.irma-international.org/chapter/rfid-enabled-vehicular-network-ubiquitous/72006

Data Mining Techniques for Software Quality Prediction
Bharavi Mishraand K. K. Shukla (2013). Designing, Engineering, and Analyzing Reliable and Efficient

Software (pp. 112-139).

www.irma-international.org/chapter/data-mining-techniques-software-quality/74877

Choosing Basic Architectural Alternatives
Gerhard Chroustand Erwin Schoitsch (2009). Designing Software-Intensive Systems: Methods and

Principles (pp. 161-221).

www.irma-international.org/chapter/choosing-basic-architectural-alternatives/8237

A Preliminary Study on Adaptive Evolution Control Using Rank Correlation for Surrogate-

Assisted Evolutionary Computation
Yudai Kuwahata, Jun-ichi Kushidaand Satoshi Ono (2018). International Journal of Software Innovation

(pp. 59-72).

www.irma-international.org/article/a-preliminary-study-on-adaptive-evolution-control-using-rank-correlation-for-surrogate-

assisted-evolutionary-computation/210455

Natural Language Processing Techniques in Requirements Engineering
A. Egemen Yilmazand I. Berk Yilmaz (2011). Knowledge Engineering for Software Development Life

Cycles: Support Technologies and Applications (pp. 21-33).

www.irma-international.org/chapter/natural-language-processing-techniques-requirements/52875

http://www.igi-global.com/chapter/low-overhead-development-of-scalable-resource-efficient-software-systems/108612
http://www.igi-global.com/chapter/low-overhead-development-of-scalable-resource-efficient-software-systems/108612
http://www.irma-international.org/chapter/rfid-enabled-vehicular-network-ubiquitous/72006
http://www.irma-international.org/chapter/data-mining-techniques-software-quality/74877
http://www.irma-international.org/chapter/choosing-basic-architectural-alternatives/8237
http://www.irma-international.org/article/a-preliminary-study-on-adaptive-evolution-control-using-rank-correlation-for-surrogate-assisted-evolutionary-computation/210455
http://www.irma-international.org/article/a-preliminary-study-on-adaptive-evolution-control-using-rank-correlation-for-surrogate-assisted-evolutionary-computation/210455
http://www.irma-international.org/chapter/natural-language-processing-techniques-requirements/52875

