
293

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

DOI: 10.4018/978-1-4666-6026-7.ch013

Integrating Security
into Agile Models:

Scrum, Feature-Driven Development
(FDD), and eXtreme Programming (XP)

ABSTRACT

Agile methodologies have gained recognition in recent years as being efficient development processes
through their quick delivery of software, even under time constraints. Agile methodologies consist of a
few process models that have their own criteria in helping different types of projects. However, agile
methods such as Scrum, Feature-Driven Development (FDD), and eXtreme Programming (XP) have
been criticized due to the lack of availability of security elements in their various phases, resulting in
the development of unsecure software. Thus, the authors propose the idea of a set of security-focused
elements to enhance the existing agile models. In this chapter, the findings of the related research and
the highlights of improved agile models after the integration of security are presented.

Imran Ghani
Universiti Teknologi Malaysia, Malaysia

Adila Firdaus Bt Arbain
Universiti Teknologi Malaysia, Malaysia

Zulkarnain Azham
Universiti Teknologi Malaysia, Malaysia

Nor Izzaty Yasin
Universiti Teknologi Malaysia, Malaysia

Seung Ryul Jeong
Kookmin University, South Korea

294

Integrating Security into Agile Models

1. AGILE MODELS

1.1. Scrum

Scrum (Schwaber & Beedle, 2002) is an itera-
tive, incremental software process, which is by
far the most popular agile developmental process
(Version one, 2006). Scrum can assist with small
to medium size projects consisting of many sub-
tasks that need to be done. In relation to the idea
of iteration, decomposition to small tasks that
group them in backlogs and daily meetings; scrum
ensures that the process is simple and effective in
delivering small and working software packages.

Figure 1 shows the processes of Scrum within
a project. It starts with collecting the user stories
(requirements) in product backlog; from this prod-
uct backlog, a sprint backlog is then created. Each
sprint will undergo development process while a
daily scrum meeting will be held to evaluate the
progress and hold discussions about any problems
that may have arisen with the current sprint. After
concluding the sprints, the finished sprint will
become the potentially shippable product to the
customer.

1.2. FDD

Even though people have always maintained that
iterative processes do not require much planning
(Hunt,2006), FDD has proven otherwise. By
planning the building of the list of feature pro-
cesses and subsequent planning by these feature
processes, FDD has become well-known for its
efficient project management processes. FDD is
deemed suitable for small to large scale projects
respectively.

Figure 2 shows the existing FDD process
model that consists of 5 main phases. In the first
phase, Develop an Overall model, the architect
will seek to draw out the whole design of the
system. The second phase is the creation of a
Building a Feature list. This phase will identify a
list of features for the whole set of systems. After
acquiring a set of features, the project manager will
then, specifically: plan the features based on the
due dates; assign the feature to class owners and
rank the features based on priority. The design of
the feature sets will then be started in the Design
by Feature phase. Lastly, the feature will be built
incrementally by features designed in the Build
by Features’ phase.

Figure 1. Scrum process model

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/integrating-security-into-agile-models/108622

Related Content

The Role of Compliance and Conformance in Software Engineering
José C. Delgado (2014). Handbook of Research on Emerging Advancements and Technologies in

Software Engineering (pp. 392-420).

www.irma-international.org/chapter/the-role-of-compliance-and-conformance-in-software-engineering/108627

Classification of Bug Injected and Fixed Changes Using a Text Discriminator
Akihisa Yamadaand Osamu Mizuno (2015). International Journal of Software Innovation (pp. 50-62).

www.irma-international.org/article/classification-of-bug-injected-and-fixed-changes-using-a-text-discriminator/121547

A Software Tool for Reading DICOM Directory Files
Ricardo Villegas, Guillermo Montillaand Hyxia Villegas (2009). Software Applications: Concepts,

Methodologies, Tools, and Applications (pp. 1182-1198).

www.irma-international.org/chapter/software-tool-reading-dicom-directory/29441

Providing Engineering Services With Smart Objects: An Active Big Data Approach
Stephen H. Kiasler, William H. Moneyand Stephen J. Cohen (2018). International Journal of Systems and

Service-Oriented Engineering (pp. 43-68).

www.irma-international.org/article/providing-engineering-services-with-smart-objects/231507

Software Architecture Recovery Using Integrated Dependencies Based on Structural, Semantic,

and Directory Information
Shiva Prasad Reddy Puchala, Jitender Kumar Chhabraand Amit Rathee (2022). International Journal of

Information System Modeling and Design (pp. 1-20).

www.irma-international.org/article/software-architecture-recovery-using-integrated/297060

http://www.igi-global.com/chapter/integrating-security-into-agile-models/108622
http://www.irma-international.org/chapter/the-role-of-compliance-and-conformance-in-software-engineering/108627
http://www.irma-international.org/article/classification-of-bug-injected-and-fixed-changes-using-a-text-discriminator/121547
http://www.irma-international.org/chapter/software-tool-reading-dicom-directory/29441
http://www.irma-international.org/article/providing-engineering-services-with-smart-objects/231507
http://www.irma-international.org/article/software-architecture-recovery-using-integrated/297060

