
473

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 21

DOI: 10.4018/978-1-4666-6026-7.ch021

Non-Intrusive Adaptation
of System Execution Traces
for Performance Analysis

of Software Systems

ABSTRACT

This chapter discusses how to adapt system execution traces to support analysis of software system per-
formance properties, such as end-to-end response time, throughput, and service time. This is important
because system execution traces contain complete snapshots of a systems execution—making them useful
artifacts for analyzing software system performance properties. Unfortunately, if system execution traces
do not contain the required properties, then analysis of performance properties is hard. In this chapter,
the authors discuss: (1) what properties are required to analysis performance properties in a system
execution trace; (2) different approaches for injecting the required properties into a system execution
trace to support performance analysis; and (3) show, by example, the solution for one approach that
does not require modifying the original source code of the system that produced the system execution.

1. INTRODUCTION

Challenges of using system execution traces for
performance analysis. Software performance
analysis is the process of analyzing performance
properties (e.g. response time, service time,
throughput) of a software system. Analyzing
system execution traces is one technique used in

software performance analysis. System execution
traces can be generated by (1) compiling the source
code of the system with instrumentation code(Wolf
& Mohr, 2003); (2) collecting the log messages
while executing the instrumented system (Hill J.,
2010); and (3) registering for certain events in the
target system and generating messages whenever
that event occurs (Mod & Murphy, 2001). The first

Manjula Peiris
Indiana University Purdue University Indianapolis (IUPUI), USA

James H. Hill
Indiana University Purdue University Indianapolis (IUPUI), USA

474

Non-Intrusive Adaptation of System Execution Traces for Performance Analysis

method is an intrusive method because it modifies
the actual source code of the target system. Second
and third methods are non-intrusive, because it
does not require modifying the system’s original
source code.

Most of the existing approaches for using
system execution traces to analyze software per-
formance are based on intrusive methods(Wolf
& Mohr, 2003). The main limitation with these
approaches is it requires access to the system’s
source code. Other approaches for using system
execution traces to analyze software performance
are tightly coupled with system architecture and
deployment (Mod & Murphy, 2001). Finally,
approaches that are not architecture-dependent
require system execution traces to be generated in
a certain format (Salonen & Piilil, 2012)(Salonen
& Piilil, 2012),(Nagaraj, Killian, & Neville, 2012).
Moreover, such approaches are not trying to utilize
system log messages, but rather enforce system
developers to use provided logging mechanisms.
This approach therefore requires system develop-
ers to change the underlying implementation for
the purpose of performance analysis. The limita-
tions discussed above make it hard to generalize
existing approaches for different kinds of systems,
and their generated system execution trace.

We have focused on using non-intrusive ap-
proaches, such as execution log messages for
performance analysis, to overcome the current
limitations of using intrusive system execution
traces for software performance analysis. Rather
than modifying the system’s original source code,
we focus on creating an intermediate model to ab-
stract out the events in the system execution trace
and the relations among log messages. Likewise,
we assume generated log messages are not in a
certain format.

The realization of our approach is in a tool
called Understanding Non-functional Intensions
via Testing and Experimentation (UNITE) (Hill
& Schmidt, 2009). UNITE uses dataflow models
to describe causality relationships between event
types—not event instances—in the system. This

allows UNITE to operate at a higher level of
abstraction that remains constant regardless of
how the underlying software system is designed,
implemented, and deployed (i.e., the mapping of
software components to hardware components).
The dataflow model is then used to process the
system execution trace, and analyze performance
properties.

Although it is possible to analyze perfor-
mance properties via system execution traces
using tools like UNITE, it is assumed that system
execution traces contain several properties, e.g.,
identifiable keywords, unique message instances,
enough variations among the same event types
to support performance analysis. Moreover, the
dataflow model must contain several properties,
e.g., identifiable log formats and unique relations
between different log formats. If planned early
enough in the software lifecycle, it is possible to
ensure these properties exist in both the dataflow
model and generated system execution trace.
Unfortunately, it is not possible to always ensure
that these requirements are met.

This chapter therefore illustrates the follow-
ing on adapting system execution traces and their
dataflow models to contain properties required to
analyze software system performance properties:

• How to adapt system execution traces and
corresponding dataflow models to contain
the properties required for supporting per-
formance analysis using a framework we
have developed called System Execution
Trace Adaptation Framework (SETAF);

• What are the different design alternatives—
including their advantages and disadvan-
tages—for adapting system execution trac-
es to support performance analysis;

• How SETAF can be applied to system ex-
ecution traces generated by different soft-
ware systems; and

• A performance comparison of two dif-
ferent system execution trace adaptation
techniques.

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/non-intrusive-adaptation-of-system-execution-

traces-for-performance-analysis-of-software-systems/108632

Related Content

Matilda: A Generic and Tailorable Framework for Direct Model Execution in Model-Driven

Software Development
Hiroshi Wada, Junichi Suzuki, Adam Malinowskiand Katsuya Oba (2010). Handbook of Research on

Software Engineering and Productivity Technologies: Implications of Globalization (pp. 250-279).

www.irma-international.org/chapter/matilda-generic-tailorable-framework-direct/37036

CMF: A Crop Model Factory to Improve Scientific Models Development Process
Guillaume Barbier, Véronique Cucchi, François Pinetand David R. C. Hill (2013). Progressions and

Innovations in Model-Driven Software Engineering (pp. 181-195).

www.irma-international.org/chapter/cmf-crop-model-factory-improve/78212

A Study on Autonomous Driving Simulation Using a Deep Learning Process Model
Symphorien Karl Yoki Donziaand Haeng-Kon Kim (2022). International Journal of Software Innovation (pp.

1-11).

www.irma-international.org/article/a-study-on-autonomous-driving-simulation-using-a-deep-learning-process-

model/293264

Critical Issues in Requirements Engineering Education
Rafia Naz Memon, Rodina Ahmadand Siti Salwah Salim (2014). Handbook of Research on Emerging

Advancements and Technologies in Software Engineering (pp. 19-40).

www.irma-international.org/chapter/critical-issues-in-requirements-engineering-education/108608

Software Service Adaptation Based on Interface Localisation
Claus Pahland Luke Collins (2015). International Journal of Systems and Service-Oriented Engineering

(pp. 16-34).

www.irma-international.org/article/software-service-adaptation-based-on-interface-localisation/125842

http://www.igi-global.com/chapter/non-intrusive-adaptation-of-system-execution-traces-for-performance-analysis-of-software-systems/108632
http://www.igi-global.com/chapter/non-intrusive-adaptation-of-system-execution-traces-for-performance-analysis-of-software-systems/108632
http://www.irma-international.org/chapter/matilda-generic-tailorable-framework-direct/37036
http://www.irma-international.org/chapter/cmf-crop-model-factory-improve/78212
http://www.irma-international.org/article/a-study-on-autonomous-driving-simulation-using-a-deep-learning-process-model/293264
http://www.irma-international.org/article/a-study-on-autonomous-driving-simulation-using-a-deep-learning-process-model/293264
http://www.irma-international.org/chapter/critical-issues-in-requirements-engineering-education/108608
http://www.irma-international.org/article/software-service-adaptation-based-on-interface-localisation/125842

